Answer:
correct answer is d)
Explanation:
This answer demonstrates law of conservation of mass because the mass of the products is equal to the mass of reactants with the help of the coefficients which is the process known as balancing. This answer also includes the correct formulas, as Br is a gas so it MUST be written as Br2. hope this helps:)
Answer:
2.95 g of CH₄
Explanation:
To start this, we determine the equation:
4H₂ + CO₂ → CH₄ + 2H₂O
4 moles of hydrogen react to 1 mol of carbon dioxide in order to produce 1 mol of methane and 2 moles of water.
To determine the limiting reactant, we need to know the moles of each reactant.
8.1 g . 1 mol/ 44g = 0.184 moles of carbon dioxide
2.3 g . 1mol / 2g = 1.15 moles of hydrogen
4 moles of hydrogen react to 1 mol of CO₂
Then, 1.15 moles may react to (1.15 . 1) /4 = 0.2875 moles
We only have 0.184 moles of CO₂, so this is the limiting reactant. Not enough CO₂ to complete the 0.2875 moles that are needed.
Ratio is 1:1. 1 mol of CO₂ produces 1 mol of methane
Then, 0.184 moles of CO₂ will produce 0.184 moles of CH₄
We convert moles to mass: 0.184 mol . 16 g /mol = 2.95 g
B ase from the reaction <span>cacn2 3 h2o → caco3 2 nh3, for every 1 mole of caco3 produced there 2 moles of nh3 being produced. to solved this, we must first convert the caco3 to moles.
mass nh3 = 187 g caco3 (1 mol caco3 / 100 g caco3 ) ( 2 mol nh3 / 1 mol caco3) ( 17 g nh3 / 1 mol nh3)
mass nh3 = 63.58 g nh3 is produced</span>
The muscles will contract and work together to contract in different ways