You are buying 2 items so let's use two different variables to represent each:
p = number of tubes of paint
b = number of disposable brushes
cost = price per item × number of items
Equations from information given:
4p + 0.50b = 20 ← from the first 2 sentences
2p = b ← if there are twice as many brushes as paint tubes you need 2 times paint tubes to equal number of brushes
Solve the problem by using substitution... 1b equals 2p so replace b with that:
4p + 0.50(2p) = 20
4p + 1p = 20 ← 0.50 is half so half of 2p is 1p
5p = 20 ← combine like terms
p = 4 ← divide both sides of the equation by 5
Recall the equation 2p = b replace p with 4
2(4) = b
8 = b
ANSWER:
You purchased 4 tubes of paint and 8 disposable brushes.
Answer:
no
Step-by-step explanation:
they are not like terms because the term 9x^2 is to the 2nd power which means that you are supposed to times the number by itself 2 times and 9x is not to the 2nd power so it stays the same.
Answer:
Option B: -4 - 15x - 10 + 4x = -45
Step-by-step explanation:
The second step of the equation is to distribute 5 to the numbers in the parenthesis
You have to draw a pie graph.
The first piece (with the straight angle) cuts the pie in half.
The second piece cuts the remaining half in halves (making a quarter).
The third and fourth pieces are the same as each other. So they must each have an angle of 45 degrees. Each of these is an eighth of the total pie.
Should be fairly easy. Good luck!
Answer:
34 trabajadores.
Step-by-step explanation:
Supongamos que el empresario tiene N trabajadores, y tiene la cantidad de dinero D para pagarles cada día.
Si el empresario decide pagarle 50 a cada trabajador le faltan 110.
Esto se puede reescribir como:
50*N = D + 110
(50 por número de empleados es igual que el dinero que tiene más lo que le falta para pagar)
También sabemos que si pagara 45 a cada empleado, le sobraría 60.
Esto se puede reescribir como:
45*N = D - 60
Entonces tenemos dos ecuaciones:
50*N = D + 110
45*N = D - 60
Para resolver esto, el primer paso es aislar una de las variables en una de las ecuaciones, en este caso aislaré D en la segunda ecuación.
45*N + 60 = D
Ahora podemos reemplazar esto en la primer ecuación y resolver para N
50*N = (45*N + 60) + 110
50*N = 45*N + 170
50*N - 45*N = 170
5*N = 170
N = 170/5 = 34
El empresario tiene 34 trabajadores.