1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
4 years ago
9

Given the equation (x-h)^2 +(y-k)^2= r^2 the coordinates of the center are ( , ) ???

Mathematics
1 answer:
lapo4ka [179]4 years ago
8 0
The center is at (h,k).
this is the standard equation of a circle. r is the radius
You might be interested in
A zucchini plant in Darnell’s garden was 12 centimeters tall when it was first planted. Since then, it has grown approximately 0
Ilia_Sergeevich [38]
12+.5 each day is the answer for the first part of the question
 
4 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
How do l do this I’m so confused
Anika [276]

Answer:

967.6cm^{2}  (1 d.p)

Step-by-step explanation:

Total Surface Area of Cylinder = 2\pi rh+2\pi r^{2}

Given from the question, r = 7 cm and h = 15cm

Lets Substitute r and h into the formula to find the Total Surface Area of the cylinder.

Total Surface Area of Cylinder = 2\pi (7)(15)+2\pi (7)^{2} \\=210\pi +98\pi \\=308\pi cm^{2} \\=967.6cm^{2}  (1 d.p)

7 0
2 years ago
You are under contract to design a storage building with a square base and a volume of 14,000 cubic feet. the cost of materials
Goryan [66]
The first thing we are going to do for this case is define variables.
 We have then:
 y = the cost of the box
 x = one side of the square base
 z = height of the box
 The volume of the building is 14,000 cubic feet:
 x ^ 2 * z = 14000
 We cleared z:
 z = (14000 / x ^ 2)
 On the other hand, the cost will be:
 floor = 4 (x ^ 2)
 roof = 3 (x ^ 2)
 for the walls:
 1 side = 16 (x * (14000 / x ^ 2)) = 16 (14000 / x)
 4 sides = 64 (14000 / x) = 896000 / x
 The total cost is:
 y = floor + roof + walls
 y = 4 (x ^ 2) + 3 (x ^ 2) + 896000 / x
 y = 7 (x ^ 2) + 896000 / x
 We derive the function:
 y '= 14x - 896000 / x ^ 2
 We match zero:
 0 = 14x - 896000 / x ^ 2
 We clear x:
 14x = 896000 / x ^ 2
 x ^ 3 = 896000/14
 x = (896000/14) ^ (1/3)
 x = 40
 min cost (y) occurs when x = 40 ft
 Then,
 y = 7 * (40 ^ 2) + 896000/40
 y = 33600 $
 Then the height
 z = 14000/40 ^ 2 = 8.75 ft
 The price is:
 floor = 4 * (40 ^ 2) = 6400
 roof = 3 * (40 ^ 2) = 4800
 walls = 16 * 4 * (40 * 8.75) = 22400
 Total cost = $ 33600 (as calculated previously)
 Answer:
 
The dimensions for minimum cost are:
 
40 * 40 * 8.75
8 0
4 years ago
Help and please explain (20 points, will reward brainliest :))
notka56 [123]

Answer:x=13

BMC=75 degrees

Step-by-step explanation:

(x+2)+(5x+10)=90 degrees

so 6x+12=90

x=13

5x+10=5x13+10=75 degrees

7 0
4 years ago
Other questions:
  • Noah rides his bike 15 miles a day, 5 days a week. How many miles will Noah ride his bike in 8 weeks?
    15·2 answers
  • Subtract and simplify<br>10/w -1/3
    10·1 answer
  • Given the following vector field and oriented curve​ C, evaluate ModifyingBelow Integral from nothing to nothing With Upper C Bo
    9·1 answer
  • Which statements are true based on the diagram?
    12·2 answers
  • If
    12·1 answer
  • Solve by substitution. <br><br> 2x + y = 5<br> 3x - 3y = 3
    8·2 answers
  • . Write an equation to represent the relationship in the following table. Captionless Image
    8·1 answer
  • C. Find a parametrization for the line segment with endpoints (-1, 3) and (3, -2).
    9·1 answer
  • PLZ HELP! ALL YOU NEED TO KNOW IS IN THE PICTURE!
    8·1 answer
  • What is an improper fraction<br> ten pts.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!