12+.5 each day is the answer for the first part of the question
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Limits
- Right-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
U-Solve
Improper Integrals
Exponential Integral Function: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integral] Rewrite [Exponential Rule - Rewrite]:

- [Integral] Rewrite [Improper Integral]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set:

- Differentiate [Basic Power Rule]:

- [Derivative] Rewrite:

<em>Rewrite u-substitution to format u-solve.</em>
- Rewrite <em>du</em>:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute in variables:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute [Exponential Integral Function]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Back-Substitute:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-x%5E2%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-1%29%20-%20Ei%28a%29%5D)
- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴
diverges.
Topic: Multivariable Calculus
Answer:

Step-by-step explanation:
Total Surface Area of Cylinder = 
Given from the question, r = 7 cm and h = 15cm
Lets Substitute r and h into the formula to find the Total Surface Area of the cylinder.
Total Surface Area of Cylinder = 
The first thing we are going to do for this case is define variables.
We have then:
y = the cost of the box
x = one side of the square base
z = height of the box
The volume of the building is 14,000 cubic feet:
x ^ 2 * z = 14000
We cleared z:
z = (14000 / x ^ 2)
On the other hand, the cost will be:
floor = 4 (x ^ 2)
roof = 3 (x ^ 2)
for the walls:
1 side = 16 (x * (14000 / x ^ 2)) = 16 (14000 / x)
4 sides = 64 (14000 / x) = 896000 / x
The total cost is:
y = floor + roof + walls
y = 4 (x ^ 2) + 3 (x ^ 2) + 896000 / x
y = 7 (x ^ 2) + 896000 / x
We derive the function:
y '= 14x - 896000 / x ^ 2
We match zero:
0 = 14x - 896000 / x ^ 2
We clear x:
14x = 896000 / x ^ 2
x ^ 3 = 896000/14
x = (896000/14) ^ (1/3)
x = 40
min cost (y) occurs when x = 40 ft
Then,
y = 7 * (40 ^ 2) + 896000/40
y = 33600 $
Then the height
z = 14000/40 ^ 2 = 8.75 ft
The price is:
floor = 4 * (40 ^ 2) = 6400
roof = 3 * (40 ^ 2) = 4800
walls = 16 * 4 * (40 * 8.75) = 22400
Total cost = $ 33600 (as calculated previously)
Answer:
The dimensions for minimum cost are:
40 * 40 * 8.75
Answer:x=13
BMC=75 degrees
Step-by-step explanation:
(x+2)+(5x+10)=90 degrees
so 6x+12=90
x=13
5x+10=5x13+10=75 degrees