Answer:
<h2>b) 4230 J
</h2>
Explanation:
Step one:
given data
extension= 40cm
Spring constant K= 52.9N/cm
Step two:
Required
the Kinetic Energy KE
the expression to find the kinetic energy is
KE= 1/2ke^2
substituting our data we have
KE= 1/2*52.9*40^2
KE=0.5*52.9*1600
KE= 42320Joules
<u>The answer is b) 4230 J
</u>
Answer:
4.02 km/hr
Explanation:
5 km/hr = 1.39 m/s
The swimmer's speed relative to the ground must have the same direction as line AC.
The vertical component of the velocity is:
uᵧ = us cos 45
uᵧ = √2/2 us
The horizontal component of the velocity is:
uₓ = 1.39 − us sin 45
uₓ = 1.39 − √2/2 us
Writing a proportion:
uₓ / uᵧ = 121 / 159
(1.39 − √2/2 us) / (√2/2 us) = 121 / 159
Cross multiply and solve:
159 (1.39 − √2/2 us) = 121 (√2/2 us)
220.8 − 79.5√2 us = 60.5√2 us
220.8 = 140√2 us
us = 1.115
The swimmer's speed is 1.115 m/s, or 4.02 km/hr.
A procedure is all the steps used to do an experiment in order.
<span>the experiment is when you test your hypothesis and is designed to answer your question. </span>
<span>the procedure is all the steps of the experiment.</span>
The Earth is a sphere is a statement to describe a scientific law
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.