Answer:
a = 0.63 m/s²
Explanation:
given,
mass of submarine = 1460-kg
upward buoyant force = 16670 N
downward resistive force = 1150 N
submarine acceleration = ?
assuming g = 10 m/s²
now,
B - (R + mg) = ma
16670 - 1150 - 1460 × 10 = 1460 × a
1460× a = 920
a = 0.63 m/s²
hence, the acceleration of submarine is equal to a = 0.63 m/s²
Answer:
3.6 seconds
Explanation:
Given:
y₀ = y = 0 m
v₀ = 31 sin 35° m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 = 0 + (31 sin 35°) t + ½ (-9.8 m/s²) t²
0 = 17.78t − 4.9t²
0 = t (17.78 − 4.9t)
t = 0 or 3.63
Rounded to the nearest tenth, the ball lands after 3.6 seconds.
Answer:
Acceleration of the second particle at that moment is given as

Explanation:
As we know that both cars are connected by same spring
So on this system of two cars there is no external force
So we will have

now we have



now we have

so we have
