<span>3. The attempt at a solution So basically what I did was divided into components. x: (3)(2000) = (3000)*v_x y: (v_vw)*(10000) = (3000)*v_y v_x, v_y is the velocity (after collision) in the x and y direction, respectively, of both cars stuck together (since it is an inelastic collision). v_vw is the initial velocity of the Volkswagen. Now what I did was that the angle is 35 degrees north of east. So basically made a triangle and figured that tan(35) = (v_y)/(v_x). This means (v_x)*(tan35) = v_y. Then, I simplified the component equations to get: x: 2 = v_x y: v_vw = 3*v_y Then plugging in for v_y, I got: v_vw = 3(2)(tan35) = 4.2 m/s as the velocity of the volkswagen. However, the answer key says 8.6 m/s. Could someone please help me out? Thanks Phys.org - latest science and technology news stories on Phys.org • Game over? Computer beats human champ in ancient Chinese game • Simplifying solar cells with a new mix of materials • Imaged 'jets' reveal cerium's post-shock inner strength Oct 24, 2012 #2 ehild Homework Helper Gold Member What directions you call x and y?
Reference https://www.physicsforums.com/threads/2d-momentum-problem.646613/</span>
Answer:
7200 N/m
Explanation:
Metric unit conversion
100g = 0.1 kg
5 cm = 0.05 m
50 cm = 0.5 m
As the block is released from the spring and travelling to height h = 1.5m off the ground, the elastics energy is converted to work of friction force and the potential energy at 1.5 m off the ground
The work by friction force is the product of the force F = 15N itself and the distance s = 0.5 m

Let g = 10 m/s2. The change in potential energy can be calculated as the following:

Therefore, as elastic energy is converted to potential energy and work of friction:



A 1000J or 1kJ of energy in 1 second implies that in 1 minute there will be 60kJ of energy converted.
Work is the defined as energy consumed thought time.

In our case,

Hope this helps!
Answer:
Take the numbers and fill them in graph.
Plot time as X and speed as Y and afterward join then like a line graph.