Answer:
The Ideal Gas Law cannot be applied to liquids. The Ideal Gas Law is #PV = nRT#. That implies that #V# is a variable. But we know that a liquid has a constant volume, so the Ideal <u><em>Gas Law cannot apply to a liquid.</em></u>
Explanation:
this is my awnser soory if it was a multiple choice question plz mark brainliest
When an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
The energy of the electron drops when it transitions levels, as well as the atom releases photons. The emission of the photon occurs as the electron transitions from an energy state to a lower state. The photon energy represents precisely the energy that would be lost when an electron moves to a level with less energy.
When such an excited electron transitions from one energy level to another, this could emit a photon. The energy drop would be equivalent to the power of the photon that is released. In electron volts, the energy of an electron, as well as its associated photon (emitted or absorbed) has been stated.
Therefore, when an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
To know more about electron
brainly.com/question/1255220
#SPJ4
<u />
Electronic configuration of the atom describes the arrangemnet of electrons in different shells and subshells ( sublevels).
Now , there are 4 types of sublevels: s, p , d and f . These sublevels have orbital which are spaces with high probability of having an electron and each orbital can have maximum 2 electrons.
Therefore,
s-sublevel has 1 orbital - it can have maximum 2 electrons.
p-sublevel has 3 orbitals - it can have maximum 6 electrons
d-sublevel has 5 orbitals - it can have maximum 10 electrons
f-sublevel has 7 orbitals - it can have maximum 14 electrons.
Hence, the acsending order of sublevels in terms of maximum number of electrons is:
<h2>s < p < d < f</h2>
The separation of molecules. I wouldn't put that if i were you.
Answer:It is C i got it correct
Explanation: