Answer:
59%
Step-by-step explanation:
all work shown and pictured
The angular velocity is the linear speed divided by the radius.
ω = d/(t*r) = (14.13 ft)/((3 s)*(6 ft))
ω = 0.785 radians/second
There are 180/π degrees per radian, so the angular velocity can also be written as ...
ω = 45 degrees/second
Answer:
First, we have rounded numbers A and B, and we know that:
A + B = 11000
A - B = 3000
Now we can solve this system of equations as:
Isolating one variable in one of the equations, i will choose A in the second equation:
A = 3000 + B.
Now we can replace this into the other equation:
3000 + B + B = 11000
2*B = 11000 - 3000 = 8000
B = 8000/2 = 4000
and:
A - 4000 = 3000
A = 3000 + 4000 = 7000.
But remember that our original numbers are not exactly whole numbers, they are rounded up, so we could write them as:
A = 6999.8 (that would be rounded up to 7000)
B = 3999.7 (that would be rounded up to 4000)
The sum is:
A + B = 10999.5 (notice that this would be rounded up to 11000)
A - B = 3000.1 (this would be rounded down to 3000)
Answer:
DE = about 41.843 (rounded to nearest thousandth)
EF= 34.276 (rounded)
Step-by-step explanation:
For DE, we know that the shorter side (the opposite side) is 24, while the angle across form it is 35°. We can use trigonometry to figure this out. SinФ equals the opposite side (in this case, 24) divided by the hypotenuse. Set sinФ equal to a ratio of the sides like this:
sin(35) =
x represents the hypotenuse length, which we don't know; 35 is the angle measure. Next, isolate x so that the equation looks like this:
= x
You will need a calculator for the next part. (and make sure you're in degree mode!). evaluate sin(35) and divide 24 by that value. That is DE's length. DE = about 41.843 (rounded to nearest thousandth)
For EF, we can just use Pythagorean theorem now that we know the other sides' values.
EF^2 + 24^2 = DE^2
*a calculator might also be useful for this part.
EF= 34.276 (rounded)
Answer:
A
A
Step-by-step explanation:
A. I don't know hope I helped you out if not sorry for the wrong answer.