Answer:
Step-by-step explanation:
<u>Total number of tickets:</u>
<u>Number of slushie or an ice cream sundae prize tickets:</u>
<u>Probability of drawing a slushie or an ice cream sundae prize ticket:</u>
<u>Predicted number of times a slushie or an ice cream sundae prize ticket will be drawn:</u>
9514 1404 393
Answer:
- f(x) = x
- g(x) = -2x+1
- f(x) -(-g(x)) = -x+1
- f(x) +g(x) = -x+1
- f(x)-(-g(x)) = (f+g)(x) is true for all functions f and g, linear or not
Step-by-step explanation:
We can define a couple of linear functions as ...
f(x) = x
g(x) = -2x+1
Then the reflected function -g(x) is ...
-g(x) = -(-2x +1) = 2x -1
And the difference from f(x) is ...
f(x) -(-g(x)) = x -(2x -1) = -x +1 . . . . f(x) -(-g(x))
We want to compare that to the sum of the functions:
f(x) +g(x) = x +(-2x +1) = -x +1 . . . . f(x) +g(x)
The two versions of the function expression have the same value.
These results are <em>a property of addition</em>, so do not depend on the nature of f(x) or g(x). They will hold for every function.
We don't know what the exact p-value is, but we are told that it's as large as 0.005 which is smaller than alpha = 0.05
Since the p-value is smaller than alpha, this means we <u>reject the null hypothesis</u>.
The way you can remember this is "if the p-value is low, then the null must go". By "low", I mean "smaller than alpha".
Recall that the p-value is the probability of observing that specific test statistic, or larger. So the chances of chi-squared being 18.68 or larger is a probability between 0.0025 and 0.005; there's a very small chance of this happening. The p-value is based entirely on the assumption that the null is correct. But if the null is correct, then the chances of landing on this are very small. We have a contradiction that basically leads to us concluding the null must not be the case. It's not 100% guaranteed of course, but it's fairly strong evidence.
In short, the p-value being smaller than alpha = 0.05 means we reject the null.
In order to accept the null, the p-value must be 0.05 or larger.
The answer is the last choice, the points the lines intersect.