1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
True [87]
4 years ago
13

PLZ HELP I AM FAILING AND NEED HELP!!!!

Mathematics
1 answer:
MA_775_DIABLO [31]4 years ago
5 0

Answer: About 13% of the school would be in chess club.

Step-by-step explanation: Out of 85 students, 11 were in chess club. So:

11 / 85 = 0.1294117647, or approximately 13%.

If it's not too much to ask, may I have brainliest?

You might be interested in
Find the value of R so that the line that passes through each pair of points has the given slope: (8, -2 ), (r, -6), m=-4
kondor19780726 [428]
\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%   (a,b)
&({{ 8}}\quad ,&{{ -2}})\quad 
%   (c,d)
&({{ r}}\quad ,&{{ -6}})
\end{array}
\\\\\\
% slope  = m
slope = {{ m}}= \cfrac{rise}{run} \implies 
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-6-(-2)}{r-8}=-4
\\\\\\
\cfrac{-6+2}{r-8}=-4\implies -4=-4(r-8)\implies \cfrac{-4}{-4}=r-8\\\\\\ 1+8=r
8 0
3 years ago
How can you use mental math to find the percent of a number?
olga_2 [115]
Every percent of that number is 1/100 of that number 
Example 30, 1/100 of 30 is .30
Example 100, 1/100 of 100 is 1
Example 52, 1/100 of 52 is .52
3 0
3 years ago
Help me plz quick my phone about to die
konstantin123 [22]
I'll do the first graph.

We can easily find the y intercept by inputting 0 for x.

y = -2(0) + 7
y = 7

The y-intercept is (0, 7)

To find the x intercept, isolate x.

y = -2x + 7
Add 2x to both sides.
2x + y = 7
Subtract y from both sides.
2x = -y + 7
Divide by 2 on both sides.
x = -1/2y + 3.5

Input 0 for y.

x = -1/2(0) + 3.5
x = 3.5

The x intercept is (3.5, 0)

Now try the rest own your own! :)
5 0
4 years ago
A baker is deciding how many batches of muffins to make to sell in his bakery. He wants to make enough to sell every one and no
Morgarella [4.7K]

Answer:

P(x = 1) = 0.10

Step-by-step explanation:

Given

\begin{array}{ccccc}x & {1} & {2} & {3} & {4} \ \\ P(x) & {0.10} & {0.30} & {0.40} & {0.20} \ \ \end{array}

Required

Determine the probability of selling exactly 1 batch

This probability is represented with P(x = 1)

From the table:

When x = 1; P(x) = 0.10

Hence:

P(x = 1) = 0.10

<em>In other words, the probability of selling exactly 1 is 0.10</em>

7 0
3 years ago
Lim n-&gt; infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Other questions:
  • If one angle of a rhombus is a right angle then it is also what kind of quadrilateral? Explain.
    8·2 answers
  • How many complex zeros does the function x^8+3x^2-4
    7·1 answer
  • PLZ HELP 20 times 1000000 /0 =
    10·2 answers
  • Which two skills are important for a phlebotomist?
    10·2 answers
  • What is the slope intercept form for this graph ? Please answer !!
    6·1 answer
  • What is the answer to 56/417.76
    6·1 answer
  • It is 6.417.5 km from Indianapolis to London, England. The Flash can make this trip in 1
    15·1 answer
  • Solve the simultaneous equations<br> 2x - 5y = 9<br> 3x + 4y = 2
    12·1 answer
  • In pic (nothing academical)
    11·2 answers
  • What is the value of X?<br> Enter your answer in the box
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!