-----------------------------------------------------------
Make y the subject :
-----------------------------------------------------------
y - 3 = 4(x + 8)
y - 3 = 4x + 32 // Apply distributive property
y = 4x + 35 // Add 3 to both sides
-----------------------------------------------------------
Identify Slope :
-----------------------------------------------------------
Slope = 4
-----------------------------------------------------------
Find a point on the line :
-----------------------------------------------------------
When x = 0,
y = 4(0) + 35 // Sub x = 0 into the equation
y = 35 // Combine like terms
Point = (0, 35)
-----------------------------------------------------------
Answers :
(a) Slope = 4
(b) One point on the line is (0, 35)
-----------------------------------------------------------
14x-2/-2=0
14x-2=0*-2
14x-2=0
14x=2
14/2=x
x=7
Hope this helps :)!
You have not provided the diagram/coordinates for point Q, therefore, I cannot provide an exact answer.
However, I can help you with the concept.
When rotating a point 90° counter clock-wise, the following happens:
coordinates of the original point: (x,y)
coordinates of the image point: (-y,x)
Examples:
point (2,5) when rotated 90° counter clock-wise, the coordinates of the image would be (-5,2)
point (1,9) when rotated 90° counter clock-wise, the coordinates of the image would be (-9,1)
point (7,4) when rotated 90° counter clock-wise, the coordinates of the image would be (-4,7)
Therefore, for the given point Q, all you have to do to get the coordinates of the image is apply the transformation:
(x,y) .............> are changed into.............> (-y,x)
Hope this helps :)
Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.
1st one is true and second one false.