Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.
You could use another word for change can be variable witch means change and if you times the one two more times then you would get four because two time two would be four and times the one would be four.
Answer:
Al2(SO4)3 and Mg(OH)2
Explanation:
1. Al has a charge of 3-, and SO4 of 2-
when you cross multiply the charges you get
Al2 and (SO4)3
*the reason theres a bracket around the sulfate ion is that the charge 3 is not for oxygen only, but the entire sulphate ion*
Hence, Al2(SO4)3
2. Mg has a charge of 2- and OH of 1-
again cross multiply
Mg (you dont need to add the 1) and (OH)2
again, the bracket around OH means the charge appiles to Oxygen AND hydrogen
hence, Mg(OH)2
<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
Answer: Lexington and Concord
Explanation: The British were trying to find weapons and could not find them.