By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
Answer:
Sugar, sodium chloride, and hydrophilic proteins are all substances that dissolve in water. Oils, fats, and certain organic solvents do not dissolve in water because they are hydrophobic.
And, water is called the "universal solvent" because it dissolves more substances than any other liquid. ... Water molecules have a polar arrangement of the oxygen and hydrogen atoms—one side (hydrogen) has a positive electrical charge and the other side (oxygen) had a negative charge.
I don't see any options so there i hope it helps .
This is an application of Boyle's law:
P₁V₁ = P₂V₂. we don't have to convert volume and pressure to standard forms. we can even use the pressure with mmHg
1 atm = 760 mmHg
V₂ = P₁V₁ / P₂ = 745 x 500 / 760 = 490 ml
Note that here we assume constant temperature
Answer:
It's False
Explanation:
In a chemical reaction, reactants that are not used up when the reaction is finished are called excess reagents. The reagent that is completely used up or reacted is called the limiting reagent, because its quantity limits the amount of products formed.
Hope this helps you
Answer:
The correct option is;
It is used during photosynthesis to capture sunlight
Explanation:
During photosynthesis, light energy from the Sun is converted and stored in sugars as chemical energy. The Sun light energy is used in the formation of complex sugars such as glucose from the combination of water from the ground and carbon dioxide from the atmosphere while oxygen is released as the byproduct. Organisms are then able to obtain energy from the glucose as well as carbon fiber
The chemical equation for the reaction is as follows;
6CO₂ + 12H₂O + light energy → C₂H₁₂O₆ + 6O₂ + 6H₂O
Carbon, Water, GLucose, Oxygen, Water
dioxide