Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation:
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or, (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or, (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 209.33 yards
or, (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.
The correct answer is F. Quantitative data are numerical in nature, while qualitative data are categorical in nature.
Explanation:
In research and all the different fields that apply to it, the word "data" refers to information, values or knowledge that can be used to understand a specific situation or phenomenon. Additionally, data can be of two different types quantitative and qualitative, these differ in their nature, the phenomenons they described and the way they should be analyzed. Indeed quantitative data refers mainly to numerical data or information about quantities such as statistics that are especially useful in mathematics, science and similar that focus on numbers. On the other hand, qualitative data refers to data based on categories or qualities and because of this qualitative data is used in humanistic research, although both types of data can be combined to study a phenomenon. Considering this, the key difference between both types of data is "Quantitative data are numerical in nature, while qualitative data are categorical in nature".
EF = 50 in.
In similar figures, corresponding sides are proportional. We use the similarity statement ABCD~EFGH to write a proportion:

Cross multiply the proportion:
45*x = 75*30
45x = 2250
Divide both sides by 45:
45x/45 = 2250/45
x = 50
Answer:
a = 3, b = -1, c = 10
Step-by-step explanation:
Let the three numbers be a, b and c.
Equation 1: a + b + c = 12
Equation 2: a + 2b + 3c = 31
Equation 3: 9b + c = 1
Equation 2 - Equation 1:
Equation 4: b + 2c = 19
Equation 3 times by the number 2
Equation 5: 18b + 2c = 2
Equation 5 - Equation 4
17b = -17
b = -1
Substitute into Equation 4:
2c - 1 = 19
2c = 20
c = 10
Substitute into Equation 1:
a + b + c = 12
a - 1 + 10 = 12
a = 3
There's a really easy way to convert any units to other units.
Right now, we have the fraction (4 miles) / (2 hours).
We want to find a fraction that's exactly equal to that one,
but has the units of (miles/minute) or maybe (feet/minute).
Just take the original fraction, and multiply it by some other
fractions.
Each fraction you multiply it by must have the value of ' 1 ' so
you don't change the value of the original fraction. But it can
have different units, that cancel with other units to eventually
give you the units you want.
(4 miles / 2 hours) times (1 hour / 60 minutes)
The second fraction is equal to ' 1 ', because the top and the bottom
have the same value ... 1 hour is the same thing as 60 minutes.
Multiply the fractions: (4 miles x 1 hour) / (2 hour x 60 minutes)
Now you can cancel 'hour' from the top and the bottom, and you have
(4 miles x 1) / (2 x 60 minutes)
= (4 miles) / (120 minutes)
= (4 / 120) mile/minute = 0.0333... mile / minute .
Let's do it again, go a little farther, and get an answer that
might mean more and feel more like an answer.
(4 miles) / (2 hours) x (5280 feet / mile) x (1 hour / 60 minutes)
The 2nd and 3rd fractions both have the value of ' 1 ', because
the top is equal to the bottom.
Multiply all three fractions:
(4 miles x 5280 feet x 1 hour) / (2 hours x 1 mile x 60 minutes)
You can cancel both 'mile' and 'hour' out of the top and bottom,
and look what you have left:
(4 x 5280 feet x 1) / (2 x 1 x 60 minutes)
= (4 x 5280) / (2 x 60) feet / minutes
= (21,120 / 120) feet/minute = 176 feet per minute