They are all not functions
Answer:
Step-by-step explanation:
The discriminant is used to determine the number and nature of the zeros of a quadratic. If the discriminant is positive and a perfect square, there are 2 rational zeros; if the discriminant is positive and not a perfect square, there are 2 rational complex zeros; if the discriminant is 0, there is 1 rational root; if the discriminant is negative, there are no real roots.
The roots/solutions/zeros of a quadratic are where the graph goes through the x axis. Those are the real zeros, even if they don't fall exactly on a number like 1 or 2 or 3; they can fall on 1.32, 4.35, etc. They are still real. If the graph doesn't go through the x-axis at all, the zeros are imaginary because the discriminant was negative and you can't take the square root of a negative number. As you can see on our graph, the parabola never goes through the x-axis. Therefore, the zeros are imaginary because the discriminant was negative. Choice C. Get familiar with your discriminants and the nature of quadratic solutions. Your life will be much easier!
Answer:
<em>☆</em><em><</em><em> </em><em><u>《</u></em><em><u>HOPE IT WILL HELP YOU</u></em><em>》</em><em>></em><em>☆</em>
Step-by-step explanation:
Y=1.5x+2
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>)</u></em></h3>
y=1.5 (1) +2
y=1.5+2
y=3.5
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>)</u></em></h3>
y=1.5(2)+2
y=3+2
y=5
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>3</u></em><em><u>)</u></em></h3>
y=1.5 (3)+2
y=4.5+2
y=6.5
<h3>(x=4)</h3>
y=1.5 (4)+2
y=6+2
y=8
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>5</u></em><em><u>)</u></em></h3>
y=1.5 (5)+2
y=7.5+2
y=9.5
<h2>
<em><u>please</u></em><em><u> </u></em><em><u>mark my ans as BRAIN</u></em><em><u> </u></em><em><u>LIST</u></em></h2>