Answer:
The weight of the water in the pool is approximately 60,000 lb·f
Step-by-step explanation:
The details of the swimming pool are;
The dimensions of the rectangular cross-section of the swimming pool = 10 feet × 20 feet
The depth of the pool = 5 feet
The density of the water in the pool = 60 pounds per cubic foot
From the question, we have;
The weight of the water in Pound force = W = The volume of water in the pool given in ft.³ × The density of water in the pool given in lb/ft.³ × Acceleration due to gravity, g
The volume of water in the pool = Cross-sectional area × Depth
∴ The volume of water in the pool = 10 ft. × 20 ft. × 5 ft. = 1,000 ft.³
Acceleration due to gravity, g ≈ 32.09 ft./s²
∴ W = 1,000 ft.³ × 60 lb/ft.³ × 32.09 ft./s² = 266,196.089 N
266,196.089 N ≈ 60,000 lb·f
The weight of the water in the pool ≈ 60,000 lb·f
Answer:
1. Objective function is a maximum at (16,0), Z = 4x+4y = 4(16) + 4(0) = 64
2. Objective function is at a maximum at (5,3), Z=3x+2y=3(5)+2(3)=21
Step-by-step explanation:
1. Maximize: P = 4x +4y
Subject to: 2x + y ≤ 20
x + 2y ≤ 16
x, y ≥ 0
Plot the constraints and the objective function Z, or P=4x+4y)
Push the objective function to the limit permitted by the feasible region to find the maximum.
Answer: Objective function is a maximum at (16,0),
Z = 4x+4y = 4(16) + 4(0) = 64
2. Maximize P = 3x + 2y
Subject to x + y ≤ 8
2x + y ≤ 13
x ≥ 0, y ≥ 0
Plot the constraints and the objective function Z, or P=3x+2y.
Push the objective function to the limit in the increase + direction permitted by the feasible region to find the maximum intersection.
Answer: Objective function is at a maximum at (5,3),
Z = 3x+2y = 3(5)+2(3) = 21
You need to divide 65 1/2 by 15.






Each one got
acres.
Answer:
y=1.4x+6.8
Step-by-step explanation:
(-2;4) (-7;-3)
4=-2k+b
-3=-7k+b
7=5k
k=1.4
-2.8+b=4
b=6.8
I already know k and b so I can write an equation.
y=1.4x+6.8