![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right]](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D)

![\bf A=5280\left[ \cfrac{\left( 1+\frac{0.06}{1} \right)^{1\cdot 4}-1}{\frac{0.06}{1}} \right]](https://tex.z-dn.net/?f=%5Cbf%20A%3D5280%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7B0.06%7D%7B1%7D%20%5Cright%29%5E%7B1%5Ccdot%20%204%7D-1%7D%7B%5Cfrac%7B0.06%7D%7B1%7D%7D%20%5Cright%5D)
Joe is making $485 payments monthly, but the amount gets interest on a yearly basis, not monthly, so the amount that yields interest is 485*12
also, keep in mind, we're assuming is compound interest, as opposed to simple interest
We have to solve for f:
2 + 1.25 f = 10 - 2.75 f
1.25 f + 2.75 f = 10 + 2
4 f = 12
f = 12 : 4
f = 3
Answer: f = 3
It must be ≤ instead of ≥.
y ≤ - 3·x + 4
Answer:
As it sounds, the idea itself.
Step-by-step explanation:
Answer:
y= 4/5x + 1
Step-by-step explanation: