Answer:
1/12 my guy
Step-by-step explanation:
There really isn't one
 
        
                    
             
        
        
        
Step 1:
Start by putting 

 in front of each term
![\frac{d}{dx}[y cos x]= \frac{d}{dx}[5x^2]+ \frac{d}{dx}[ 3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%20cos%20x%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B5x%5E2%5D%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%203y%5E2%5D)
-----------------------------------------------------------------------------------------------------------------
Step 2:
Deal with the terms in 'x' and the constant terms
![\frac{d}{dx}[ycosx]= 10x+ \frac{d}{dx} [3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D%2010x%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B3y%5E2%5D%20%20)
----------------------------------------------------------------------------------------------------------------
Step 3:
Use the chain rule for the terms in 'y'
![\frac{d}{dx}[ycosx]=10x+6y \frac{dy}{dx}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D10x%2B6y%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20)
--------------------------------------------------------------------------------------------------------------
Step 4:
Use the product rule on the term in 'x' and 'y'


--------------------------------------------------------------------------------------------------------------
Step 5:
Rearrange to make 

 the subject


![[cos(x) - 6y]  \frac{dy}{dx}=10x + y sin(y)](https://tex.z-dn.net/?f=%5Bcos%28x%29%20-%206y%5D%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D10x%20%2B%20y%20sin%28y%29%20)

 ⇒ Final Answer
 
        
             
        
        
        
Answer:
Step-by-step explanation:

 
        
             
        
        
        
9514 1404 393
Answer:
   D.  (-3, -2)
Step-by-step explanation:
The equations have different coefficients for x and y, so will have one solution. The solutions offered are easily tested in either equation.
Using (x, y) = (-2, -3):
   x = y -1  ⇒  -2 = -3 -1 . . . . False
Using (x, y) = (-3, -2):
   x = y -1  ⇒  -3 = -2 -1 . . . .True
   2x = 3y  ⇒  2(-3) = 3(-2) . . . . True
The solution is (-3, -2).
__
If you'd like to solve the set of equations, substitution for x works nicely.
   2(y -1) = 3y
   2y -2 = 3y . . eliminate parentheses
   -2 = y . . . . . . subtract 2y
   x = -2 -1 = -3
The solution is (x, y) = (-3, -2).