If a parallelogram has an area of 7 square units, and the height corresponding to a base is
units, then the base is 28 units.
As per the question statement, a parallelogram has an area of 7 square units, and the height corresponding to a base is
units.
We are required to find out the base of the parallelogram.
To solve this question, we need to know the formula to calculate the area of a parallelogram, which goes as
Area of Parallelogram = (Base * Height)
Putting our data obtain from the question statement, in the above-mentioned formula, we can calculate the value of the base of our concerned parallelogram, i.e.,

Therefore, base of our concerned parallelogram is 28 units.
- Parallelogram: In Euclidean geometry, a parallelogram is a four-sided, plane, closed figure (Quadrilateral) with two pairs of parallel, opposite sides.
To learn more about Parallelograms, click on the link below.
brainly.com/question/16052466
#SPJ9
Answer:
142
Step-by-step explanation:
This is a Total Surface Area problem.
The box has 6 faces (sides): front, back, left, right, top, bottom. They are all rectangles. Area of a rectangle is length × width.
You find the area of each face and add them all up.
see image.
TSA = 15+15+21+21+35+35
= 30+42+70
= 142 sq inches
Erica needs 142 pieces of paper to decorate her box.
Answer:
I is the 3rd answer
Step-by-step explanation:
formula=1/3 x 3.14 x r^2 x height
=16 is diameter so radius will be 16/2 or 8
<em>:</em><em>let </em><em>put </em><em>terms </em><em>in </em><em>the </em><em>formula:</em>
1/3 x 3.14. x 8^2 x 15 = <em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u>4</u></em><em><u>.</u></em><em><u>8</u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em>volume=</em><em>1</em><em>0</em><em>0</em><em>4</em><em>.</em><em>8</em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>