The solution for this problem is:
dV/dt = r/(t + 1)², V(0) = $500000, V(1) = $500000 - $200000 = $300000
∫dV = r∫ 1/(t + 1)² dt
V(t) = -r/(t + 1) + C
500000 = -r/(0 + 1) + C
400000 = -r/(1 + 1) + C
C = 300000, r = -100000
V(t) = 100000/(t + 1) + 300000
V(6) = 100000/(6+ 1) + 300000
V(6) = 14285.7143 + 300000
V(6) = $314285.71
We can parameterize this part of a cone by

with

and

. Then

The area of this surface (call it

) is then
Answer:

Step-by-step explanation:

Since this answer is in <em>Quadrant</em><em> </em><em>I</em>,<em> </em>this would be a positive-positive answer, which in this case, will remain a positive.
<u>Extended</u><u> </u><u>Information</u><u> </u><u>on</u><u> </u><u>Quadrants</u>

<u>Extended</u><u> </u><u>Information</u><u> </u><u>on</u><u> </u><u>Trigonometric</u><u> </u><u>Ratio</u><u> </u><u>Values</u>

I am joyous to assist you anytime.