Answer:
C = 68.667°
a = 123.31 yd.
c = 114.90 yd.
Step-by-step explanation:
The missing image for the question is attached to this solution.
In the missing image, a triangle AB is given with angles A and B given to be 88° 35' and 22° 45' respectively
We are them told to find angle C and side a and c given that side b = 47.7 yd.
A = 88° 35' = 88° + (35/60)° = 88.583°
B = 22° 45' = 22° + (45/60)° = 22.75°
The sum of angles in a triangle = 180°
A + B + C = 180°
C = 180° - (A + B) = 180° - (88.583° + 22.75°) = 68.667°
The sine law is given as
(a/sin A) = (b/sin B) = (c/sin C)
Using the first two terms of the sine law
(a/sin A) = (b/sin B)
a = ?
A = 88.583°
b = 47.7 yd.
B = 22.75°
(a/sin 88.583°) = (47.7/sin 22.75°)
a = (47.7 × sin 88.583°) ÷ sin 22.75°
a = 123.31 yd.
Using the last two terms of the sine law
(b/sin B) = (c/sin C)
b = 47.7 yd.
B = 22.75°
c = ?
C = 68.667°
(47.7/sin 22.75°) = (c/sin 68.667°)
c = (47.7 × sin 68.667°) ÷ sin 22.75°
c = 114.90 yd.
Hope this Helps!!!
(6-3)÷3-6+2
3÷3-6+2
1-6+2
-5+2
-3
Answer: 4/49
Step-by-step explanation:
I evaluated the solution and this what I got for my solution

- subtract the 12 from both sides so that it becomes the last constant term in the quadratic equation which should now equal 0.
- take the 4x
- half the coefficient of 4 (2)
- square it (4)
- add it to the equation (+4)
- subtract it from the equation (-4)
- factorise the square (x+2)^2 expands to (x^2 + 4x + 2) as {a+b}^2={a^2 + ab + ba + b^2}
- now the equation is in turning point form.
- to find x, add 16 and square root 16 and (x+2)
- subtract 2 from positive or negative 4 (as -4^2 and 4^2 both equal 16).
- This should give you two values for x, -6 and 2.
I really hope that this helped :)