4x+ 3 = 3(2x-5) ;x=2; x^{2} = 4
y = 7x - 3
Note the gradient of the tangent is the derivative of y at x = 1
Differentiate using the power rule
(a
) = na
y = 3x³ - x² + 2
= 9x² - 2x
x = 1 :
= 9 - 2 = 7 ← gradient of tangent
equation in point- slope form, using m = 7 and (a, b) = (1, 4)
y - 4 = 7(x - 1) ← point-slope form
y - 4 = 7x - 7
y = 7x - 3 ← in slope-intercept form
Hello :
<span>(x - 3)² + y² = 7²
the center is : A(3 , 0 ) and radius r = 7
the </span> point D is on the interior if : AD <span>< 7
</span>the point D is on the exterior if : AD > 7
the point D is circumference of the circle if :AD = 7
Answer:
<h2>(f+g)(2) = 1</h2>
Step-by-step explanation:
Given :
f(x) = x − 3
g(x) = x² − x
Note : (f+g)(x) = f(x) + g(x)
then
(f+g)(2) = f(2) + g(2)
= (2 - 3) + (2² - 2)
= -1 + 2
= 1
another method:
(f+g)(x) = f(x) + g(x) = x − 3 + x² − x = x² - 3
then
(f+g)(2) = 2² - 3 = 4 - 3 = 1