1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
14

What is the conjugate of the square root of -15 ? ...?

Mathematics
1 answer:
Virty [35]3 years ago
7 0
The answer to the problem is as follows:


The square root of -15 is equal to i*sqrt(15). Therefore, the conjugate of this complex number is -i*sqrt(15).


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!



You might be interested in
Seven more than the product of 7 and a number
n200080 [17]
Answer:

7 + 7n

Explanation:

Seven more (7 plus) the product of 7 and a number (seven times n) = 7 plus 7n
8 0
2 years ago
Read 2 more answers
Do these basic math problems please
Brut [27]

Answer:

.

Step-by-step explanation:

a.) 72 ÷ 8 × 9 = 81 (we divide 72 by 8 first then multiply the result with 9)

b.) -72 ÷ 8 × 9 = -81 (it's same with a only differ by negative sign)

c.) 72 ÷ (-8) × 9 = -81 (dividing 72 by -8 will give us -9 and multiplying -9 by -9 will give the result of -81)

d.) 72 ÷ 8 × (-9) = -81 (divide 72 by 8 and it will be 9, mutliply it by -9 and again it will give -81)

e.) -72 ÷ 8 × (-9) = 81 (divide -72 by 8 and it will be -9 multiplying it by -9 will give a positive 81 since two negative signed numbers multiplied or divided gives positive result)

8 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
The prime factorization of 56
Liono4ka [1.6K]
The prime factores are 7,2,2,2
6 0
2 years ago
Please help me as I need this by today
sdas [7]
The system shown at the right has no solution, as the grahs never intersect.
On the other hand, the line and the parab. at the left do intersect, and the points of intersection are (-3,0) and (6,6).
6 0
3 years ago
Other questions:
  • How do you make 1 3/4 an improper fraction?
    7·1 answer
  • A sample of 36 observations is selected from one population with a population standard deviation of 4.2. The sample mean is 101.
    7·1 answer
  • What is the answer to question 4,5,6
    11·1 answer
  • gas prices decreased this week from $4 per gallon to 3.80 dollars per gallon what is the percent decrease​
    13·2 answers
  • I need to know 725 miles in 8 hours miles per hour
    7·1 answer
  • What is the solution of StartRoot 1 minus 3 x EndRoot = x + 3 ?
    14·2 answers
  • What is the absolute value of 12
    12·1 answer
  • You invest $2,800 in an account that pays an interest rate of 6.5% compounded continuously calculate the balance of your account
    5·1 answer
  • There are 6 yellow hexagons 2 red trapezoids and 9 green triangles how many flowers could you make if they were changed 30 yello
    11·1 answer
  • Select al solutions to the inequality 8t&lt; -2t+20
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!