Answer: (C) Sample minimum: 32, Sample maximum: 81 Q1:39.5, Median: 58, Q3: 74
Step-by-step explanation:
Five number summary for a data contains :
Minimum value
First quartile
Median
Third quartile
Maximum value.
Given data : 32, 34, 43, 55, 65, 75, 81, 79, 73, 61,47, 36
Arrange in order →32, 34, 36, 43,47, 55, 61, 65, 73, 75, 79, 81
Total values = 12 (even)
⇒ Median = Mean of the middle most two values.
![=\dfrac{55+61}{2} =58](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B55%2B61%7D%7B2%7D%20%3D58)
First quartile = Median of first half (32, 34, 36, 43,47, 55)
![Q_1=\dfrac{36+43}{2}=39.5](https://tex.z-dn.net/?f=Q_1%3D%5Cdfrac%7B36%2B43%7D%7B2%7D%3D39.5)
Third quartile = Median of first half (61, 65, 73, 75, 79, 81)
![Q_3=\dfrac{73+75}{2}=74](https://tex.z-dn.net/?f=Q_3%3D%5Cdfrac%7B73%2B75%7D%7B2%7D%3D74)
Also, Sample Minimum value = 32
Sample Maximum value=81
Therefore , the five-number summary for this data :
Sample Minimum=32
Sample Maximum=81
Median = 58
![Q_1=39.5](https://tex.z-dn.net/?f=Q_1%3D39.5)
![Q_3=74](https://tex.z-dn.net/?f=Q_3%3D74)
Hence, the correct option is (C) Sample minimum: 32, Sample maximum: 81 Q1:39.5, Median: 58, Q3: 74