Epsom salt is MgSO4.
We assume x water of hydration in the crystalline form.
Molecular mass of MgSO4 = 24+32+4*16=120
Molecular mass of MgSO4.xH2O = 120+18x
By proportion,
2.000/0.977 = (120+18x)/120
Cross multiply
0.977(120+18x) = 120*2.000
from which we solve for x
17.586x+117.24 = 240
x=122.78/17.586
=6.980
Answer: there are 7 water of hydration in Epsom salt, according to the experiment.
Note: more accurate (proper) results may be obtained by using exact values (3-4 significant figures) in the molecular masses. However, since water of hydration is the nearest integer, using approximate values (to at least two significant figures) suffice.
1. To solve this question, you need to equalize the mass of solute for both solution. The calculation would be:
mass of solute= volume*concentration
mass1=mass2
volume1 * concentration1 = volume2 * concentration2
volume1 * 0.7%= 2L *(1000ml/L) * 0.2%
volume1 = 2000ml * (0.2%/0.7%)
volume1= 571.429 ml
2. Since you already have the volume of stock needed, you just need to subtract it from the total solution volume to count the number of solvents needed.
new solution volume= stock volume + diluting solvent volume
2L * 2000ml/L = 571.429ml + diluting solvent volume
diluting solvent volume= 2000ml- 571.429 ml= 1428.571ml
Convert grams to moles and use Avogadro's number 6.022x10tho the 23rd power. Hope this helps
Identify each element found in the equation. The number of atoms of each type of atom must be the same on each side of the equation once it has been balanced.
What is the net charge on each side of the equation? The net charge must be the same on each side of the equation once it has been balanced.
If possible, start with an element found in one compound on each side of the equation. Change the coefficients (the numbers in front of the compound or molecule) so that the number of atoms of the element is the same on each side of the equation. Remember, to balance an equation, you change the coefficients, not the subscripts in the formulas.
Once you have balanced one element, do the same thing with another element. Proceed until all elements have been balanced. It's easiest to leave elements found in pure form for last.
Check your work to make certain the charge on both sides of the equation is also balanced.