Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
The molecule for ethane is C2H6. or CH3-CH3.
Carbon LOVES hydrogen. If possible, Carbon would have four bonds attach to hydrogens. IN this molecule, one of the bond is used to attach a carbon to another carbon, so instead of 4 hydrogens, each carbon would have 3 hydrogens..
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.

Answer:
it is actually b because i did this i picked b and got it right
Explanation: