When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
![K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}](https://tex.z-dn.net/?f=%20K_%7BC%7D%20%3D%20%5Cfrac%7B%5B%20C%5E%7Bc%7D%20%5D%7D%7B%5B%20A%5E%7Ba%7D%20%5D%5B%20B%5E%7Bb%7D%20%5D%7D%20)
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.
Stored mechanical energy is energy stored and awaiting to be used and mechanical energy is the energy that was stored being used.
H₂O₂ + 2FeSO₄ + H₂SO₄ → Fe₂(SO₄)₃ + 2H₂O
H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O k=1
Fe²⁺ → Fe³⁺ + e⁻ k=2
H₂O₂ + 2H⁺ + 2Fe²⁺ → 2H₂O + 2Fe³⁺
Answer:
The two statements are all True for group 7 and 8 elements.
Explanation:
The Group 7 elements are known as the halogens. They are reactive non-metals and are always found in compounds with other elements. Chlorine, bromine and iodine are all halogens.
Chlorine, bromine and iodine are the three common Group 7 elements. Group 7 elements form salts when they react with metals. The term ‘halogen’ means 'salt former'.
In addition to the discription given to norble gases in the question which is true, norble gases;
- are inert gases located on the right of the periodic table.
- have a full-set of valence electrons, so they're stable, unreactive
- are colorless, odorless and tasteless.
- have low melting and low boiling points.
- can be found in small amounts in the Earth's crust and the Earth's atmosphere.
The average atomic mass of an element can be determined by multiplying the individual masses of the isotopes with their respective relative abundances, and adding them.
Average atomic mass of Br = 158 amu(0.2569) + 160 amu(0.4999) + 162 amu(0.2431)
Average atomic mass = 159.96 amu
As described in the problem, the relative abundance for Br-79 is 25.69%. This is because 2 atoms of Br is equal to 79*2 = 158 amu. Similarly, the relative abundance of Br-81 is 81*2 = 162, which is 24.31%.