S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
<u>Explanation:</u>
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
To measure the rate of this reaction we must measure the rate of concentration change of one of the reactants or products. To do this, we will include (to the reacting S₂O₈
²⁻ and I⁻
i) a small amount of sodium thiosulfate, Na₂S₂O₃,
ii) some starch indicator.
The added Na₂S₂O₃ does not interfere with the rate of above reaction, but it does consume the I₂ as soon as it is formed.
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
This reaction is much faster than the previous, so the conversion of I2 back to I⁻ is essentially instantaneous.
![rate = \frac{dI2}{dt} = \frac{1/2 [S2O3^2^-]}{t}](https://tex.z-dn.net/?f=rate%20%3D%20%5Cfrac%7BdI2%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%2F2%20%5BS2O3%5E2%5E-%5D%7D%7Bt%7D)
Density of a solution is mass of solution per unit volume
Density = mass/volume
mass of solution is 46.08 g
volume of solution is 58.9 mL
since mass and volume is known, density can be calculated
density = 46.08 g / 58.9 mL = 0.78 g/mL
Answer:
γ−Hydrogen is easily replacable during bromination reaction in presence of light , because Allylic substitution is being preferred.
Explanation:
that's all
Answer:
the energy store in an object is called potential energy
the unit of measure is called a joule
Explanation:
potential is what they can do and a joule is they're potential in measurement.
Answer: Option (d) is the correct answer.
Explanation:
A tetarhedral geometry is the geometry which includes four atoms bonded to the central atom and it does not contain any lone pair of electron.
For example,
has tetrahedral geometry.
Thus, we can conclude that a molecule which contains four bonded pairs of electrons and zero lone pairs. The name of the molecular geometry is tetrahedral.