Answer:
154 students
Step-by-step explanation:
First get the total number of students .
This can be gotten by
12% of A = 21
Where A represents the total number of students.
12% represents the % of A that chose to study French and 21 is the number of students that studied French .
Therefore,
12% /100% x A = 21
0.12 x A = 21
Divide both sides by 0.12
0.12/0.12 x A = 21/0.12
A = 175
The total number of students is 175.
If 21 chose to study French their freshman year ,number of students that chose not to will be total number of students minus number of those who chose to study French.
That’s
175 - 21
= 154
154 students chose not to study French their freshman year
First solve the triangle:
75° + 75° + x = 180°
150° + x = 180°
x = 180° - 150°
Therefore x = 30°
Then, use the geometrical property of vertically opposite angles.
Therefore. x° = 30°
<h3>3
Answers: Choice D, Choice E, Choice F</h3>
============================================================
Explanation:
The inequality 6x - 10y ≥ 9 solves to y ≤ (3/5)x - 9/10 when you isolate y.
Graph the line y = (3/5)x - 9/10 and make this a solid line. The boundary line is solid due to the "or equal to" as part of the inequality sign. We shade below the boundary line because of the "less than" after we isolated for y.
Now graph all of the points given as I've done so in the diagram below. The points in the blue shaded region, or on the boundary line, are part of the solution set. Those points are D, E and F.
We can verify this algebraically. For instance, if we weren't sure point E was a solution or not, we would plug the coordinates into the inequality to get...
6x - 10y ≥ 9
6(5) - 10(2) ≥ 9 .... plug in (x,y) = (5,2)
30 - 20 ≥ 9
10 ≥ 9 ... this is a true statement
Since we end up with a true statement, this verifies point E is one of the solutions. I'll let you check points D and F.
-----------
I'll show an example of something that doesn't work. Let's pick on point A.
We'll plug in (x,y) = (-1,1)
6x - 10y ≥ 9
6(-1) - 10(1) ≥ 9
-6 - 10 ≥ 9
-16 ≥ 9
The last inequality is false because -16 is smaller than 9. So this shows point A is not a solution. Choices B and C are non-solutions for similar reasons.
Answer:
isn't an equivalence relation. It is reflexive but neither symmetric nor transitive.
Step-by-step explanation:
Let
denote a set of elements.
would denote the set of all ordered pairs of elements of
.
For example, with
,
and
are both members of
. However,
because the pairs are ordered.
A relation
on
is a subset of
. For any two elements
,
if and only if the ordered pair
is in
.
A relation
on set
is an equivalence relation if it satisfies the following:
- Reflexivity: for any
, the relation
needs to ensure that
(that is:
.)
- Symmetry: for any
,
if and only if
. In other words, either both
and
are in
, or neither is in
.
- Transitivity: for any
, if
and
, then
. In other words, if
and
are both in
, then
also needs to be in
.
The relation
(on
) in this question is indeed reflexive.
,
, and
(one pair for each element of
) are all elements of
.
isn't symmetric.
but
(the pairs in
are all ordered.) In other words,
isn't equivalent to
under
even though
.
Neither is
transitive.
and
. However,
. In other words, under relation
,
and
does not imply
.
Is there more information? Because it’s impossible to tell without an average size for the items