The question is missing parts. Here is the complete question.
Let M =
. Find
and
such that
, where
is the identity 2x2 matrix and 0 is the zero matrix of appropriate dimension.
Answer: ![c_{1} = \frac{-16}{10}](https://tex.z-dn.net/?f=c_%7B1%7D%20%3D%20%5Cfrac%7B-16%7D%7B10%7D)
![c_{2}=\frac{-214}{10}](https://tex.z-dn.net/?f=c_%7B2%7D%3D%5Cfrac%7B-214%7D%7B10%7D)
Step-by-step explanation: Identity matrix is a sqaure matrix that has 1's along the main diagonal and 0 everywhere else. So, a 2x2 identity matrix is:
![\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![M^{2} = \left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D)
![M^{2}=\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D)
Solving equation:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+c_{1}\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right] +c_{2}\left[\begin{array}{cc}1&0\\0&1\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2Bc_%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%20%2Bc_%7B2%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Multiplying a matrix and a scalar results in all the terms of the matrix multiplied by the scalar. You can only add matrices of the same dimensions.
So, the equation is:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+\left[\begin{array}{cc}6c_{1}&5c_{1}\\-1c_{1}&-4c_{1}\end{array}\right] +\left[\begin{array}{cc}c_{2}&0\\0&c_{2}\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6c_%7B1%7D%265c_%7B1%7D%5C%5C-1c_%7B1%7D%26-4c_%7B1%7D%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dc_%7B2%7D%260%5C%5C0%26c_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
And the system of equations is:
![6c_{1}+c_{2} = -31\\-4c_{1}+c_{2} = -15](https://tex.z-dn.net/?f=6c_%7B1%7D%2Bc_%7B2%7D%20%3D%20-31%5C%5C-4c_%7B1%7D%2Bc_%7B2%7D%20%3D%20-15)
There are several methods to solve this system. One of them is to multiply the second equation to -1 and add both equations:
![6c_{1}+c_{2} = -31\\(-1)*-4c_{1}+c_{2} = -15*(-1)](https://tex.z-dn.net/?f=6c_%7B1%7D%2Bc_%7B2%7D%20%3D%20-31%5C%5C%28-1%29%2A-4c_%7B1%7D%2Bc_%7B2%7D%20%3D%20-15%2A%28-1%29)
![6c_{1}+c_{2} = -31\\4c_{1}-c_{2} = 15](https://tex.z-dn.net/?f=6c_%7B1%7D%2Bc_%7B2%7D%20%3D%20-31%5C%5C4c_%7B1%7D-c_%7B2%7D%20%3D%2015)
![10c_{1} = -16](https://tex.z-dn.net/?f=10c_%7B1%7D%20%3D%20-16)
![c_{1} = \frac{-16}{10}](https://tex.z-dn.net/?f=c_%7B1%7D%20%3D%20%5Cfrac%7B-16%7D%7B10%7D)
With
, substitute in one of the equations and find
:
![6c_{1}+c_{2}=-31](https://tex.z-dn.net/?f=6c_%7B1%7D%2Bc_%7B2%7D%3D-31)
![c_{2}=-31-6(\frac{-16}{10} )](https://tex.z-dn.net/?f=c_%7B2%7D%3D-31-6%28%5Cfrac%7B-16%7D%7B10%7D%20%29)
![c_{2}=-31+(\frac{96}{10} )](https://tex.z-dn.net/?f=c_%7B2%7D%3D-31%2B%28%5Cfrac%7B96%7D%7B10%7D%20%29)
![c_{2}=\frac{-310+96}{10}](https://tex.z-dn.net/?f=c_%7B2%7D%3D%5Cfrac%7B-310%2B96%7D%7B10%7D)
![c_{2}=\frac{-214}{10}](https://tex.z-dn.net/?f=c_%7B2%7D%3D%5Cfrac%7B-214%7D%7B10%7D)
<u>For the equation, </u>
<u> and </u>
<u />