Answer:
where are the graphs?
Step-by-step explanation:
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x
<span>(3x - 1)( x + 5)(4x - 3) = 12x^3 + 47x^2 - 62x +15 </span>
<span>(3x^2 –
x + 15x - 5)( 4x – 3 ) = <span>12x^3 + 47x^2 - 62x +15 </span></span>
<span>(3x^2 +
14x - 5)( 4x – 3 ) = <span>12x^3 + 47x^2 - 62x +15 </span></span>
<span>12x^3 –
9x^2 + 56x^2 – 42x – 20x + 15 = <span>12x^3 +
47x^2 - 62x +15 </span></span>
<span>12x^3 –
47x^2 - 62x + 15 = <span>12x^3 + 47x^2 - 62x +15 </span></span>
<span> </span>
Answer:
Slope and y intercept.
Step-by-step explanation:
This is necassary to write the equation of a line in y=mx+b
m is where the slope goes, and b is the y intercept.
Alternatively, you could also write the equation for a line with a point on the line and the slope.
You would then write it in point slope formula:
y-y1=m(x-x1)
This can later be converted into slope intercept form.
A= 1/360 m•pi r^2
11/2= 1/360 m• pi (3)^2
11/2= 1/360 m• pi • 9
Divide 360 by 9
11/2= 1/40 m pi
Cross multiply
440=2pi m
Divide both sides by 2pi
m= 70.02817 degrees round if necessary