Answer:

Step-by-step explanation:
The input it taken as the unknown base value, while the output here is the area of the trapezoid. b is therefore the base value, and A( b ) is the area of the trapezoid. Let's formulate the equation for the area of the trapezoid, and isolate the area of the trapezoid. To find the inverse of this function, switch y ( this is A( b ) ) and b, solving for y once more, y ➡ y ⁻ ¹.
y = height
( ( unknown base value ( b ) + 7 ) / 2 ),
y = 10
( ( b + 7 ) / 2 )
Now switch the positions of y and b -
b = 10
( ( y + 7 ) / 2 ) or
- now that we are going to take the inverse ( y ⁻ ¹ ) or B( a ), b will now be changed to a,
,
Therefore the equation that represents the inverse function will be the following : B(a) = a / 5 - 7
Answer: 0.31 or 31%
Let A be the event that the disease is present in a particular person
Let B be the event that a person tests positive for the disease
The problem asks to find P(A|B), where
P(A|B) = P(B|A)*P(A) / P(B) = (P(B|A)*P(A)) / (P(B|A)*P(A) + P(B|~A)*P(~A))
In other words, the problem asks for the probability that a positive test result will be a true positive.
P(B|A) = 1-0.02 = 0.98 (person tests positive given that they have the disease)
P(A) = 0.009 (probability the disease is present in any particular person)
P(B|~A) = 0.02 (probability a person tests positive given they do not have the disease)
P(~A) = 1-0.009 = 0.991 (probability a particular person does not have the disease)
P(A|B) = (0.98*0.009) / (0.98*0.009 + 0.02*0.991)
= 0.00882 / 0.02864 = 0.30796
*round however you need to but i am leaving it at 0.31 or 31%*
If you found this helpful please mark brainliest
Answer:
11
Step-by-step explanation:
6x+7=8x-15
7=2x+15
22=2x
11=x
Answer:
the answer should be c
Step-by-step explanation: