81 a² - 25
is a difference of two squares and its factors are (9a + 5z³) and (9a - 5z³)
Step-by-step explanation:
The difference of two squares is a binomial of two terms each term is a square and the sign between the two terms is (-), its factorization is the product of two identical binomials with different middle signs
- a² - b² is a difference of two squares
- a² - b² = (a + b)(a - b)
∵ The binomial is 81 a² - 25
∵
= 9
∵
= a
∴ 
∵
= 5
∵
= z³
∴ 
- The two terms have square root
∵ The sign between them is (-)
∴ 81 a² - 25
is a difference of two squares
∵ Its factorization is two identical brackets with different
middle signs
∵ 81 a² = 9a × 9a
∵ 25
= 5z³ × 5z³
- The terms of the two brackets are 9a and 5z³
∴ 81 a² - 25
= (9a + 5z³)(9a - 5z³)
81 a² - 25
is a difference of two squares and its factors are (9a + 5z³) and (9a - 5z³)
Learn more:
You can learn more about the difference of two squares in brainly.com/question/1414397
#LearnwithBrainly
700 stock market is worse than gain
Answer:
Step-by-step explanation:
![\huge \sqrt[5]{ {z}^{4} {z}^{ - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{4 - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{8 - 3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{5}{2} } } \\ \\ = \huge {z}^{ \frac{5}{2} \times \frac{1}{5} } \\ \\ = \huge {z}^{ \frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%7D%20%7Bz%7D%5E%7B%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B8%20-%203%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20)