Step 1 - Discovering the ionic formula of Chromium (III) Carbonate
Chromium (III) Carbonate is formed by the ionic bonding between Chromium (III) (Cr(3+)) and Carbonate (CO3(2-)):

Step 2 - Finding the molar mass of the substance
To find the molar mass, we need to multiply the molar mass of each element by the number of times it appears in the formula of the substance and, finally, sum it all up.
The molar masses are 12 g/mol for C; 16 g/mol for O and 52 g/mol for Cr. We have thus:

The molar mass will be thus:

Step 3 - Finding the percent composition of carbon
As we saw in the previous step, the molar mass of Cr2(CO3)3 is 284 g/mol. From this molar mass, 36 g/mol come from C. We can set the following proportion:

The percent composition of Carbon is thus 12.7 %.
Explanation:
Ions form when atoms gain or lose electrons. This is so that they form a full outer shell of electrons. When an atom gains electrons it becomes a negative ion, because electrons are negatively charged. For example, all halogens (group 7 or 17) form negative ions as they gain an electron forming a 1- charge. When an atom loses electrons it becomes a positive ion, as it is losing some negative charge from the electrons. This would be for example, alkali metals (group 1) which lose an electron to form a positive ion with a 1+ charge, (ALL metals form positive ions).
I would say mass lost by nuclear collisions. The mass defect is the mass difference between the mass of an atomic nucleus and the sum of the mass of its constituent particles. It equals the energy given off in the formation of the nucleus.
MgO
MgI2
PbO2
PbI4
These are the possible compounds