Step-by-step explanation:
The model will contain 1 ten and 4 ones in each group.
Answer:
below( hope this helps )
Step-by-step explanation:
2. No because we don't know if the triangles are right triangles.
3. unknown since there are no labels to what the triangle points are
Answer:
a) 
b) 
Step-by-step explanation:
By definition, we have that the change rate of salt in the tank is
, where
is the rate of salt entering and
is the rate of salt going outside.
Then we have,
, and

So we obtain.
, then
, and using the integrating factor
, therefore
, we get
, after integrating both sides
, therefore
, to find
we know that the tank initially contains a salt concentration of 10 g/L, that means the initial conditions
, so 

Finally we can write an expression for the amount of salt in the tank at any time t, it is 
b) The tank will overflow due Rin>Rout, at a rate of
, due we have 500 L to overflow
, so we can evualuate the expression of a)
, is the salt concentration when the tank overflows
Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.