The power of a power
The power of a power is related with the multiplication of the exponents. For example:

In this case

Then, the exponentes 1/2 and 2 are multiplied.
Since

Then,

Then, the answer is 7.
Answer- A. 7
1² + 3² + 4² + 4(n - 1)² = ¹/₃n(2n - 1)(2n + 1)
1² + 3² + 4² + (2n - 2)² = ¹/₃n(2n - 1)(2n + 1)
1 + 9 + 16 + (2n - 2)(2n - 2) = ¹/₃n(2n(2n + 1) - 1(2n + 1))
10 + 16 + (2n(2n - 2) - 2(2n - 2)) = ¹/₃n(2n(2n) + 2n(1) - 1(2n) - 1(1) 16 + (2n(2n) - 2n(2) - 2(2n) + 2(2)) = ¹/₃n(4n² + 2n - 2n - 1)
26 + (4n² - 4n - 4n + 4) = ¹/₃n(4n² - 1)
26 + (4n² - 8n + 4) = ¹/₃n(4n² - 1)
26 + 4n² - 8n + 4 = ¹/₃n(4n²) - ¹/₃n(1)
4n² - 8n + 4 + 26 = 1¹/₃n³ - ¹/₃n
4n² - 8n + 30 = 1¹/₃n³ - ¹/₃n
+ ¹/₃n + ¹/₃n
4n² - 7²/₃n + 30 = 1¹/₃n³
-1¹/₃n³ + 4n² - 7²/₃n + 30 = 0
-3(-1¹/₃n³ + 4n² - 7²/₃n + 30) = -3(0)
-3(-1¹/₃n³) - 3(4n²) - 3(-7²/₃n) - 3(30) = 0
4n³ - 12n² + 23n - 90 = 0
Answer: Angle 3 and 9
Step-by-step explanation:
Angle 3 and 9 are both alternate interior angles.
The other endpoint would have to be (-5,2), going off the definition of a midpoint. Since 3 is for units to the right of -1, that would mean that the other end point would have to be 4 units to the left, which is -5.