1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
3 years ago
12

How do you write a scale bar and scale distance

Mathematics
1 answer:
netineya [11]3 years ago
5 0

1 Ways to Represent. Scale. Graphic Scale. ...

2 Miles. 2.5.

3 You can use the scale bar to measure distances on the map. You can use a ruler to measure distances on the map and then multiply the distance by 1,000 to find out the distance on the ground. ...

4 500. 1,000. ...

5 Seattle. Portland. ...

6 Put a piece of paper on. the map to connect

You might be interested in
Find all the missing sides or angles in each right triangles
astra-53 [7]
In previous lessons, we used the parallel postulate to learn new theorems that enabled us to solve a variety of problems about parallel lines:

Parallel Postulate: Given: line l and a point P not on l. There is exactly one line through P that is parallel to l.

In this lesson we extend these results to learn about special line segments within triangles. For example, the following triangle contains such a configuration:

Triangle <span>△XYZ</span> is cut by <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> where A and B are midpoints of sides <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> respectively. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is called a midsegment of <span>△XYZ</span>. Note that <span>△XYZ</span> has other midsegments in addition to <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>. Can you see where they are in the figure above?

If we construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and construct <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> respectively, we have the following figure and see that segments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> are midsegments of <span>△XYZ</span>.

In this lesson we will investigate properties of these segments and solve a variety of problems.

Properties of midsegments within triangles

We start with a theorem that we will use to solve problems that involve midsegments of triangles.

Midsegment Theorem: The segment that joins the midpoints of a pair of sides of a triangle is:

<span>parallel to the third side. half as long as the third side. </span>

Proof of 1. We need to show that a midsegment is parallel to the third side. We will do this using the Parallel Postulate.

Consider the following triangle <span>△XYZ</span>. Construct the midpoint A of side <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Parallel Postulate, there is exactly one line though A that is parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>. Let’s say that it intersects side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at point B. We will show that B must be the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> and then we can conclude that <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

We must show that the line through A and parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> will intersect side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at its midpoint. If a parallel line cuts off congruent segments on one transversal, then it cuts off congruent segments on every transversal. This ensures that point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>.

Since <span><span><span>XA</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>AZ</span><span>¯¯¯¯¯¯¯</span></span></span>, we have <span><span><span>BZ</span><span>¯¯¯¯¯¯¯</span></span>≅<span><span>BY</span><span>¯¯¯¯¯¯¯¯</span></span></span>. Hence, by the definition of midpoint, point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is also parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

Proof of 2. We must show that <span>AB=<span>12</span>XY</span>.

In <span>△XYZ</span>, construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and midsegments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> as follows:

First note that <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> by part one of the theorem. Since <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> and <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span></span>, then <span>∠<span>XAC</span>≅∠<span>BCA</span></span> and <span>∠<span>CAB</span>≅∠<span>ACX</span></span> since alternate interior angles are congruent. In addition, <span><span><span>AC</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span></span>.

Hence, <span>△<span>AXC</span>≅△<span>CBA</span></span> by The ASA Congruence Postulate. <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>XC</span><span>¯¯¯¯¯¯¯¯</span></span></span> since corresponding parts of congruent triangles are congruent. Since C is the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>, we have <span>XC=CY</span> and <span>XY=XC+CY=XC+XC=2AB</span> by segment addition and substitution.

So, <span>2AB=XY</span> and <span>AB=<span>12</span>XY</span>. ⧫

Example 1

Use the Midsegment Theorem to solve for the lengths of the midsegments given in the following figure.

M, N and O are midpoints of the sides of the triangle with lengths as indicated. Use the Midsegment Theorem to find

<span><span> A. <span>MN</span>. </span><span> B. The perimeter of the triangle <span>△XYZ</span>. </span></span><span><span> A. Since O is a midpoint, we have <span>XO=5</span> and <span>XY=10</span>. By the theorem, we must have <span>MN=5</span>. </span><span> B. By the Midsegment Theorem, <span>OM=3</span> implies that <span>ZY=6</span>; similarly, <span>XZ=8</span>, and <span>XY=10</span>. Hence, the perimeter is <span>6+8+10=24.</span> </span></span>

We can also examine triangles where one or more of the sides are unknown.

Example 2

<span>Use the Midsegment Theorem to find the value of x in the following triangle having lengths as indicated and midsegment</span> <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Midsegment Theorem we have <span>2x−6=<span>12</span>(18)</span>. Solving for x, we have <span>x=<span>152</span></span>.

<span> Lesson Summary </span>
8 0
3 years ago
I need help with this question?????
tangare [24]
Its just multiplied by 2
3 0
3 years ago
Read 2 more answers
Bruce is going grocery shopping. he can go to the deli, the bakery, and the dairy section. How many possibilities are there for
vodomira [7]

Answer:

1. deli, bakery, dairy;

2. deli, dairy, bakery;

3. bakery, dairy, deli;

4. bakery, deli, dairy;

5. dairy, bakery, deli;

6. dairy, deli, bakery

Step-by-step explanation:

6 possibilities

8 0
3 years ago
. 18 convert to a fully reduced fraction
Taya2010 [7]

Answer:

9/50 im pretty sure

Step-by-step explanation:

you should vote me brainliest pleaseeeeeeeeeeeee

4 0
3 years ago
Read 2 more answers
A bag of marbles contains 3 yellow, 2 red, 2 green, and 1 blue marble. What is the probability of selecting a green marble?
Papessa [141]

Answer:

2/8

Step-by-step explanation:

There are 2 green marbles.

In all, there are 8 marbles.

So, the probability is 2/8.

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the solution to the equation?
    13·2 answers
  • Indicate whether each of the following fractions is proper or improper.
    13·2 answers
  • At a football game there are 4 children for every 14 adults. If there are 1584 total people at the game, how many of them are ch
    8·1 answer
  • What is the answer I feel like this is wrong?
    9·2 answers
  • Patrons in the children's section of a local branch library were randomly selected and asked their ages. The librarian wants to
    10·1 answer
  • Find the surface area of a prism
    9·1 answer
  • Michael opened a savings account at an annual interest rate of 5%. At the end of 3 years, the account balance is $4630.50. If Mi
    15·1 answer
  • How could you use 1/8 cup measuring cup to measure the water
    7·2 answers
  • Use pemdas 3 x (5 - 1) + 13 write 3 steps
    5·2 answers
  • Find the measure of x.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!