1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
3 years ago
15

Please solve with working thankyou

Mathematics
1 answer:
Lisa [10]3 years ago
4 0

Answer:

m∠y=72°

Step-by-step explanation:

<u><em>The question is</em></u>

Find the measure of angle y

step 1

Find the measure of angle x

see the attached figure to better understand the problem

we know that

m∠x=67° -----> by corresponding angles

step 2

Find the measure of angle y

we know that

(m∠x+m∠y)+42°=180° -----> because form a straight line

substitute the measure of angle x

67°+m∠y+42°=180

m∠y+108°=180

m∠y=180°-108°

m∠y=72°

You might be interested in
the table shows a relative frequency distribution for the size of farms in the united states. find the probability that a random
Alina [70]

Step-by-step explanation:

The probability that a farm has 500 or more acres is:

P = 0.076 + 0.047 + 0.035

P = 0.158

5 0
3 years ago
Solve these linear equations by Cramer's Rules Xj=det Bj / det A:
timurjin [86]

Answer:

(a)x_1=-2,x_2=1

(b)x_1=\frac{3}{4} ,x_2=-\frac{1}{2} ,x_3=\frac{1}{4}

Step-by-step explanation:

(a) For using Cramer's rule you need to find matrix A and the matrix B_j for each variable. The matrix A is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get A more easily.

2x_1+5x_2=1\\x_1+4x_2=2

\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]

To get B_1, replace in the matrix A the 1st column with the results of the equations:

B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]

To get B_2, replace in the matrix A the 2nd column with the results of the equations:

B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]

Apply the rule to solve x_1:

x_1=\frac{det\left(\begin{array}{cc}1&5\\2&4\end{array}\right)}{det\left(\begin{array}{cc}2&5\\1&4\end{array}\right)} =\frac{(1)(4)-(2)(5)}{(2)(4)-(1)(5)} =\frac{4-10}{8-5}=\frac{-6}{3}=-2\\x_1=-2

In the case of B2,  the determinant is going to be zero. Instead of using the rule, substitute the values ​​of the variable x_1 in one of the equations and solve for x_2:

2x_1+5x_2=1\\2(-2)+5x_2=1\\-4+5x_2=1\\5x_2=1+4\\ 5x_2=5\\x_2=1

(b) In this system, follow the same steps,ust remember B_3 is formed by replacing the 3rd column of A with the results of the equations:

2x_1+x_2 =1\\x_1+2x_2+x_3=0\\x_2+2x_3=0

\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]

B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]

B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]

B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]

x_1=\frac{det\left(\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{1(2)(2)+(0)(1)(0)+(0)(1)(1)-(1)(1)(1)-(0)(1)(2)-(0)(2)(0)}{(2)(2)(2)+(1)(1)(0)+(0)(1)(1)-(2)(1)(1)-(1)(1)(2)-(0)(2)(0)}\\ x_1=\frac{4+0+0-1-0-0}{8+0+0-2-2-0} =\frac{3}{4} \\x_1=\frac{3}{4}

x_2=\frac{det\left(\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{(2)(0)(2)+(1)(0)(0)+(0)(1)(1)-(2)(0)(1)-(1)(1)(2)-(0)(0)(0)}{4} \\x_2=\frac{0+0+0-0-2-0}{4}=\frac{-2}{4}=-\frac{1}{2}\\x_2=-\frac{1}{2}

x_3=\frac{det\left(\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)}=\frac{(2)(2)(0)+(1)(1)(1)+(0)(1)(0)-(2)(1)(0)-(1)(1)(0)-(0)(2)(1)}{4} \\x_3=\frac{0+1+0-0-0-0}{4}=\frac{1}{4}\\x_3=\frac{1}{4}

6 0
3 years ago
Steve is making breakfast. The recipes call for 7/8 cup of milk for grits and 3/4 cups .for biscuits he only has 2 cups of milk.
Zanzabum
Answer: He does have enough.
Explanation: Simplifying 7/8 cups to fourths you get 1 3/4 cups of milk. If he has 2 cups of milk he still would have 1/4 cup left over of milk.
4 0
3 years ago
Confidence Interval Mistakes and Misunderstandings—Suppose that 500 randomly selected recent graduates of a university were as
kvv77 [185]

Answer:

The correct 95% confidence interval is (8.4, 8.8).

Step-by-step explanation:

The information provided is:

n=500\\\bar x=8.6\\\sigma=2.2

(a)

The (1 - <em>α</em>)% confidence interval for population mean (<em>μ</em>) is:

CI=\bar x\pm z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}

The 95% confidence interval for the average satisfaction score is computed as:

8.6 ± 1.96 (2.2)

This confidence interval is incorrect.

Because the critical value is multiplied directly by the standard deviation.

The correct interval is:

8.6\pm 1.96 (\frac{2.2}{\sqrt{500}})=8.6\pm 0.20=(8.4,\ 8.6)

(b)

The (1 - <em>α</em>)% confidence interval for the parameter implies that there is (1 - <em>α</em>)% confidence or certainty that the true parameter value is contained in the interval.

The 95% confidence interval for the mean rating, (8.4, 8.8) implies that the true there is a 95% confidence that the true parameter value is contained in this interval.

The mistake is that the student concluded that the sample mean is contained in between the interval. This is incorrect because the population is predicted to be contained in the interval.

(c)

The (1 - <em>α</em>)% confidence interval for population parameter implies that there is a (1 - <em>α</em>) probability that the true value of the parameter is included in the interval.

The 95% confidence interval for the mean rating, (8.4, 8.8) implies that the true mean satisfaction score is contained between 8.4 and 8.8 with probability 0.95 or 95%.

Thus, the students is not making any misinterpretation.

(d)

According to the Central Limit Theorem if we have a population with mean <em>μ</em> and standard deviation <em>σ</em> and we take appropriately huge random samples (<em>n</em> ≥ 30) from the population with replacement, then the distribution of the sample mean will be approximately normally distributed.

In this case the sample size is,

<em>n </em>= 500 > 30

Thus, a Normal distribution can be applied to approximate the distribution of the alumni ratings.

7 0
3 years ago
Help me with this ASAP
N76 [4]

Add each term and divide it by 2.


5+7 = 12

12/2 = 6

-2 + 6 = 4

4/2 = 2, then add the i back on to get 2i.


The midpoint is 6 + 2i

3 0
3 years ago
Other questions:
  • What is the ratio of 3 eggs for every 2 cups of sugar
    8·2 answers
  • Please answer need help asap!!
    9·1 answer
  • Which set of numbers all include the number -3
    14·1 answer
  • The function f(x) = 30(1.4)x gives the number of bacteria in a science experiment, where x is the number of days after the start
    9·1 answer
  • Given a force of 10 N and an acceleration of 5 m/s 2. What is the mass ?
    7·2 answers
  • Explain how to solve X/3 &lt; -2 <br> Please and thank you!
    5·1 answer
  • ?? anyone know thank you
    6·1 answer
  • Write the word sentence as an inequality.<br> A number x is greater than 0.
    5·1 answer
  • 1. Kiki wants to trim a merry go round with lights. If the merry go round has a diameter of 17 feet, how many feet of lights doe
    12·1 answer
  • Tell which statement is the best estimate for the division problem 650 ÷ 8.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!