1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ierofanga [76]
3 years ago
10

Solve these linear equations by Cramer's Rules Xj=det Bj / det A:

Mathematics
1 answer:
timurjin [86]3 years ago
6 0

Answer:

(a)x_1=-2,x_2=1

(b)x_1=\frac{3}{4} ,x_2=-\frac{1}{2} ,x_3=\frac{1}{4}

Step-by-step explanation:

(a) For using Cramer's rule you need to find matrix A and the matrix B_j for each variable. The matrix A is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get A more easily.

2x_1+5x_2=1\\x_1+4x_2=2

\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]

To get B_1, replace in the matrix A the 1st column with the results of the equations:

B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]

To get B_2, replace in the matrix A the 2nd column with the results of the equations:

B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]

Apply the rule to solve x_1:

x_1=\frac{det\left(\begin{array}{cc}1&5\\2&4\end{array}\right)}{det\left(\begin{array}{cc}2&5\\1&4\end{array}\right)} =\frac{(1)(4)-(2)(5)}{(2)(4)-(1)(5)} =\frac{4-10}{8-5}=\frac{-6}{3}=-2\\x_1=-2

In the case of B2,  the determinant is going to be zero. Instead of using the rule, substitute the values ​​of the variable x_1 in one of the equations and solve for x_2:

2x_1+5x_2=1\\2(-2)+5x_2=1\\-4+5x_2=1\\5x_2=1+4\\ 5x_2=5\\x_2=1

(b) In this system, follow the same steps,ust remember B_3 is formed by replacing the 3rd column of A with the results of the equations:

2x_1+x_2 =1\\x_1+2x_2+x_3=0\\x_2+2x_3=0

\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]

B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]

B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]

B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]

x_1=\frac{det\left(\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{1(2)(2)+(0)(1)(0)+(0)(1)(1)-(1)(1)(1)-(0)(1)(2)-(0)(2)(0)}{(2)(2)(2)+(1)(1)(0)+(0)(1)(1)-(2)(1)(1)-(1)(1)(2)-(0)(2)(0)}\\ x_1=\frac{4+0+0-1-0-0}{8+0+0-2-2-0} =\frac{3}{4} \\x_1=\frac{3}{4}

x_2=\frac{det\left(\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{(2)(0)(2)+(1)(0)(0)+(0)(1)(1)-(2)(0)(1)-(1)(1)(2)-(0)(0)(0)}{4} \\x_2=\frac{0+0+0-0-2-0}{4}=\frac{-2}{4}=-\frac{1}{2}\\x_2=-\frac{1}{2}

x_3=\frac{det\left(\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)}=\frac{(2)(2)(0)+(1)(1)(1)+(0)(1)(0)-(2)(1)(0)-(1)(1)(0)-(0)(2)(1)}{4} \\x_3=\frac{0+1+0-0-0-0}{4}=\frac{1}{4}\\x_3=\frac{1}{4}

You might be interested in
Read the instructions
nordsb [41]

Answer:

Step-by-step explanation:

\frac{5x - 2}{4}+\frac{1}{2}=\frac{3y+2}{2}

Multiply the equation by 4

4*\frac{5x - 2}{4}+4*\frac{1}{2}=4*\frac{3y+2}{2}\\

5x - 2 + 2 = 2*(3y + 2)

5x +0 = 2*3y + 2*2

5x = 6y + 4

5x - 6y = 4 --------------------(I)

\frac{7y+3}{3}=\frac{x}{2}+\frac{7}{3}\\

Multiply the equation by 6

6*\frac{7y+3}{3}=6*\frac{x}{2}+6*\frac{7}{3}\\

2*(7y + 3) = 3x + 2*7

14y + 6 = 3x + 14

14y = 3x + 14 - 6

14y = 3x + 8

-3x + 14y = 8 ------------------------(II)

Multiply equation (I) by 3 and equation (II) by 5 and then add

(I)*3              15x - 18y = 12

(II)*5           <u>-15x  + 70y = 40</u>     {Now add}

                          52y = 52

                              y = 52/52

                            y = 1

Substitute y =1 in equation (I)

5x - 6*1 =  4

5x - 6 = 4

      5x = 4 +6

      5x = 10

         x = 10/5

x = 2

7 0
3 years ago
Your store Brown stock in 1 gallon batch is one serving of rice grains require 1.5 cups of brown stock how many servings of gree
sladkih [1.3K]

The number of servings of greens that can be made with one batch of route stock is 0.67 batches.

<h3>Conversion of gallons to cups</h3>

In order to determine the answer, the first step is to convert gallons to cups

1 gallon = 16 cups

<h3>Number of  servings of greens that can be made</h3>

The second step is to divide 16 cups by 1.5 cups.

16 / 1.5 = 10.67 batches

To learn more about division, please check: brainly.com/question/194007

3 0
2 years ago
"Define a variable write an inequality and solve each problem".A number +1 is greater than -5 less than three.
Brrunno [24]

Answer:  -5 < x + 1 < 3

Step-by-step explanation:

Let x be the number.

-5 < x + 1 < 3

4 0
2 years ago
Fill in the blanks to express the quantities given in ratio language. Ratios must be
frozen [14]

Answer:

55555

Step-by-step explanation:

ggk

6 0
3 years ago
$900 for 9 months than for six months
MariettaO [177]
Then it would be 600 
4 0
2 years ago
Other questions:
  • Three copies of a triangle were rotated and positioned as shown. Which statement is always true about the angles in the figure?
    10·1 answer
  • 14 x 3 = 7 x ___ x 3 <br><br> 14 x 3 = ___<br><br><br> Need answer ASAP
    13·2 answers
  • Three more than a number squared?
    15·1 answer
  • What does 11 to the 3rd power equal
    8·2 answers
  • The amounts of vitamin C (in milligrams) for 100g (3.57 ounces) of various randomly selected fruits and vegetables are listed. I
    11·1 answer
  • How many 0.3's would it take to make 3? Explain your reasoning. ​
    13·1 answer
  • En una PA cuya razón es 16, el término que ocupa el lugar 4 es 61. Si el último término es 173, ¿cuántos términos tiene la progr
    12·1 answer
  • Factor as the product of two binomials <br><br> 36+12x+x^2
    12·2 answers
  • Help please i need help with my homework​
    5·1 answer
  • The shape on the left is transformed on the right.Which of the statements describes the transformation.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!