We know that
2π/3 radians-------> convert to degrees-----> 2*180/3---> 120°
120°=90°+30°
Part a) Find <span>sin(2π/3)
</span>sin(2π/3)=sin (90°+30°)
we know that
sin (A+B)=sin A*cos B+cos A*sin B
so
sin (90°+30°)=sin 90*cos 30+cos 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
sin (90°+30°)=1*√3/2+0*1/2-----> √3/2
the answer part a) is
sin(2π/3)=√3/2
Part b) Find cos (2π/3)
cos (2π/3)=cos (90°+30°)
we know that
cos (A+B)=cos A*cos B-sin A*sin B
so
cos (90°+30°)=cos 90*cos 30-sin 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
cos (90°+30°)=0*√3/2-1*1/2----> -1/2
the answer part b) is
cos (2π/3)=-1/2
Answer:
5 hours
Step-by-step explanation:
1. Find out how many dollars he earned on Saturday
3 x 6 = 18
He earned 18 dollars on Saturday.
2. Subtract 18 from 48 since that is from Saturday, not Sunday
48 - 18 = 30
3. Divide 30 by 6 to see how many hours he worked on Sunday
30/6 = 5
Answer:
The answer is "MS and QS".
Step-by-step explanation:
Given ΔMNQ is isosceles with base MQ, and NR and MQ bisect each other at S. we have to prove that ΔMNS ≅ ΔQNS.
As NR and MQ bisect each other at S
⇒ segments MS and SQ are therefore congruent by the definition of bisector i.e MS=SQ
In ΔMNS and ΔQNS
MN=QN (∵ MNQ is isosceles triangle)
∠NMS=∠NQS (∵ MNQ is isosceles triangle)
MS=SQ (Given)
By SAS rule, ΔMNS ≅ ΔQNS.
Hence, segments MS and SQ are therefore congruent by the definition of bisector.
The correct option is MS and QS
B because you multiply 7 times 4 that’s 28 then times 5 that’s 140 so for b you do 5 times 7 that’s 35 then times 4 that’s 140 so b is the correct answer, hope it helps