The equation of a circle in standard form is
![(x - h)^2 + (y - k)^2 = r^2](https://tex.z-dn.net/?f=%20%28x%20-%20h%29%5E2%20%2B%20%28y%20-%20k%29%5E2%20%3D%20r%5E2%20)
where (h, k) is the center of the circle, and r is the radius if the circle.
We need to find the radius and center of the circle.
We are given a diameter, so to find the center, we need the midpoint of the diameter.
M = ((-6 + 6)/2, (6 + (-2))/2) = (0, 2)
The center is (0, 2).
To find the radius, we find the length of the given diameter and divided by 2.
![d = \sqrt{(-6 - 6)^2 + (6 - (-2))^2)}](https://tex.z-dn.net/?f=%20d%20%3D%20%5Csqrt%7B%28-6%20-%206%29%5E2%20%2B%20%286%20-%20%28-2%29%29%5E2%29%7D%20)
![d = \sqrt{144 + 64}](https://tex.z-dn.net/?f=%20d%20%3D%20%5Csqrt%7B144%20%2B%2064%7D%20)
![d = \sqrt{208}](https://tex.z-dn.net/?f=%20d%20%3D%20%5Csqrt%7B208%7D%20)
![r = \dfrac{d}{2} = \dfrac{\sqrt{208}}{2} = \dfrac{\sqrt{208}}{\sqrt{4}} = \sqrt{52}](https://tex.z-dn.net/?f=%20r%20%3D%20%5Cdfrac%7Bd%7D%7B2%7D%20%3D%20%5Cdfrac%7B%5Csqrt%7B208%7D%7D%7B2%7D%20%3D%20%5Cdfrac%7B%5Csqrt%7B208%7D%7D%7B%5Csqrt%7B4%7D%7D%20%3D%20%5Csqrt%7B52%7D%20)
![(x - 0)^2 + (y - 2)^2 = (\sqrt{52})^2](https://tex.z-dn.net/?f=%20%28x%20-%200%29%5E2%20%2B%20%28y%20-%202%29%5E2%20%3D%20%28%5Csqrt%7B52%7D%29%5E2%20)
Answer:
3 3/5 + 1 1/4 = <u>4 17/20</u>
7/8 + 1/12 =<u> 23/24</u>
8/9 - 2/5 = <u>22/45</u>
5 1/4 - 2 2/3 = <u>2 7/12</u>
Step-by-step explanation:
3 3/5 + 1 1/4
First convert into improper fractions
= 18/5 + 5/4
Now find the common denominator
72/20 + 25/20 =
97/20
Now simplify
4 17/20
<u>Next problem:</u>
7/8 + 1/12
find the common denominator
21/24 + 2/24 =
23/24
<u>Next problem:</u>
8/9 - 2/5
find the common denominator
40/45 - 18/45 =
22/45
<u>Next problem:</u>
5 1/4 - 2 2/3
First convert into improper fractions
21/4 - 8/3
find the common denominator
63/12 - 32/12 =
31/12
Now simplify
2 7/12
Answer:
Step-by-step explanation:
so i think if you land on heads it is more like a 70% chance of getting heads but then again it could be a 30% chance that you land on tails so if you land on head you get the Alsatian and tails you get a bulldog i hope you get the correct answer good luck
Change the order of integration.
![\displaystyle \int_0^1 \int_{2y}^2 \cos(x^2) \, dx \, dy = \int_0^2 \int_0^{x/2} \cos(x^2) \, dy \, dx \\\\ ~~~~~~~~ = \int_0^2 \cos(x^2) y \bigg|_{y=0}^{y=x/2} \, dx \\\\ ~~~~~~~~ = \frac12 \int_0^2 x \cos(x^2) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cint_%7B2y%7D%5E2%20%5Ccos%28x%5E2%29%20%5C%2C%20dx%20%5C%2C%20dy%20%3D%20%5Cint_0%5E2%20%5Cint_0%5E%7Bx%2F2%7D%20%5Ccos%28x%5E2%29%20%5C%2C%20dy%20%5C%2C%20dx%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20%5Cint_0%5E2%20%5Ccos%28x%5E2%29%20y%20%5Cbigg%7C_%7By%3D0%7D%5E%7By%3Dx%2F2%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20%5Cfrac12%20%5Cint_0%5E2%20x%20%5Ccos%28x%5E2%29%20%5C%2C%20dx)
Substitute
and
.
![\displaystyle \frac12 \int_0^2 x \cos(x^2) \, dx = \frac14 \int_0^4 \cos(u) \, du = \frac14 \sin(u) \bigg|_{u=0}^{u=4} = \boxed{\frac{\sin(4)}4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac12%20%5Cint_0%5E2%20x%20%5Ccos%28x%5E2%29%20%5C%2C%20dx%20%3D%20%5Cfrac14%20%5Cint_0%5E4%20%5Ccos%28u%29%20%5C%2C%20du%20%3D%20%5Cfrac14%20%5Csin%28u%29%20%5Cbigg%7C_%7Bu%3D0%7D%5E%7Bu%3D4%7D%20%3D%20%5Cboxed%7B%5Cfrac%7B%5Csin%284%29%7D4%7D)