<h3>Answer: B) 5x^4</h3>
==============================================
Work Shown:
125 = 5*5*5 = (5)^3
x^12 = (x^4)*(x^4)*(x^4) = (x^4)^3
125x^12 = (5x^4)^3
![\large \sqrt[3]{125x^{12}} = \left(125x^{12}\right)^{1/3}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Cleft%28125x%5E%7B12%7D%5Cright%29%5E%7B1%2F3%7D)
![\large \sqrt[3]{125x^{12}} = \left((5x^4)^3\right)^{1/3}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Cleft%28%285x%5E4%29%5E3%5Cright%29%5E%7B1%2F3%7D)
![\large \sqrt[3]{125x^{12}} = (5x^4)^{3*(1/3)}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%285x%5E4%29%5E%7B3%2A%281%2F3%29%7D)
![\large \sqrt[3]{125x^{12}} = (5x^4)^{1}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%285x%5E4%29%5E%7B1%7D)
![\large \sqrt[3]{125x^{12}} = \textbf{5x}^{\textbf{4}}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Ctextbf%7B5x%7D%5E%7B%5Ctextbf%7B4%7D%7D)
Answer:
C is your answer.................
Answer:
The true statements are :
A. assertEquals(student1,student2)
C. assertSame(student1,student3)
Explanation:
AssertEquals() asserts that the objects are equal, but assertSame() asserts that the passed two objects refer to the same object or not, if found same they return true, else return false.
i hope this work for you
x=3 and y=−2
Step-by-step explanation:
Solve8x+5y=14for x:
8x+5y=14
8x+5y+−5y=14+−5y(Add -5y to both sides)
8x=−5y+14
8x8=−5y+148(Divide both sides by 8)
x=−58y+74
Step: Substitute−58y+74forxin−4x−5y=−2:
−4x−5y=−2
−4(−58y+74)−5y=−2
−52y−7=−2(Simplify both sides of the equation)
−52y−7+7=−2+7(Add 7 to both sides)
−52y=5
−52y−52=5−52(Divide both sides by (-5)/2)
y=−2
Step: Substitute−2foryinx=−58y+74:
x=−58y+74
x=−58(−2)+74
x=3(Simplify both sides of the equation)
Answer:
x=3 and y=−2
Answer:
7
Step-by-step explanation:
x+5x=42