The answer is A i believe so cause its adding 4 seats every time and you multiply 4*21 <span />
        
             
        
        
        
Answer:
Step-by-step explanation:
When using the substitution method we use the fact that if two expressions y and x are of equal value x=y, then x may replace y or vice versa in another expression without changing the value of the expression.
Solve the systems of equations using the substitution method
{y=2x+4
{y=3x+2
We substitute the y in the top equation with the expression for the second equation:
2x+4            =      3x+2
4−2              =        3x−2
2===             =         x
To determine the y-value, we may proceed by inserting our x-value in any of the equations. We select the first equation:
y= 2x + 4
We plug in x=2 and get
y=  2⋅2+4 = 8
The elimination method requires us to add or subtract the equations in order to eliminate either x or y, often one may not proceed with the addition directly without first multiplying either the first or second equation by some value.
Example:
2x−2y = 8
x+y = 1
We now wish to add the two equations but it will not result in either x or y being eliminated. Therefore we must multiply the second equation by 2 on both sides and get:
2x−2y = 8
2x+2y = 2
Now we attempt to add our system of equations. We commence with the x-terms on the left, and the y-terms thereafter and finally with the numbers on the right side:
(2x+2x)  + (−2y+2y) =  8+2
The y-terms have now been eliminated and we now have an equation with only one variable:
4x = 10
x= 10/4 =2.5
Thereafter, in order to determine the y-value we insert x=2.5 in one of the equations. We select the first:
2⋅2.5−2y     =  8
5−8             = 2y
−3               =2y
−3/2            =y
y                 =-1.5
 
        
             
        
        
        
Answer:
C. Yes nicholas is right.
 
        
             
        
        
        
Well first 9450/5=1890 then 1890/6= 315 watt hours per day
        
             
        
        
        
We have that
<span>points A (-5, 6) and B (7, -1)
Part A)
find the distance
d=</span>√[(y2-y1)²+(x2-x1)²]-------> d=√[(-1-6)²+(7+5)²]----> d=√(49+144)
d=√193  units
Part B)
find the midpoint
ABx=(x1+x2)/2-----> (-5+7)/2-----> ABx=1
ABy=(y1+y2)/2-----> (-1+6)/2-----> ABy=2.5
the midpoint is (1,2.5)
Part C)
find the slope
m=(y2-y1)/(x2-x1)-----> m=(-1-6)/(7+5)--------> m=-7/12
the slope m=-7/12