Answer:
E = 3.035× 10-¹⁹J = 1.9eV
f = 4.58 × 10¹⁴Hz
Explanation:
wavelength = 6.55 × 10-⁷m
c = 3 × 10⁸m/s
f = ?
E = ?
a) f = c/wavelength
f = 3 × 10⁸/6.55 × 10-⁷
f = 4.58 × 10¹⁴Hz
b) E = hc/wavelength
E = 6.626×10-³⁴ × 3 × 10⁸/ 6.55 × 10-⁷
E = 3.035 × 10-¹⁹J
1ev = 1.6 × 10-¹⁹J
Therefore E = 3.035/1.6 = 1.9eV
The heat needed to raise the temperature of 50g of substance by 15 c is calculated as follows
Heat = mc delta T
m= mass (50g)
c= specific heat capacity (0.92)
delta T= change in temperature( 15 c)
heat is therefore= 50 x 0.92 x 15 = 690
Nb: my answer has no units since the given specific heat capacity has no units
Answer:
Sand has less specific heat than water.
Explanation:
Specific Heat is amount of heat needed per unit mass, to raise temperature by 1 degree celsius.
More specific heat means more heat energy needed to increase temperature. It implies - more time needed to absorb heat, increase temperature; and also more time needed to lose its heat.
Less specific heat means less heat energy needed to increase temperature. It implies - less time needed to absorb heat, increase temperature; and also less time needed to lose its heat.
Sand has less specific heat than water. So, it needs less heat absorption to increase temperature by per unit (celsius) ; than water. Hence, same level of heat to both sand & water ; increase temperature of sand more than water, & make it more hot.
Answer:
Because of their spaceeeee isss different
Answer:
It's the A. 2-bromobutane
Explanation:
Have a good day