Answer:
2.28% of tests has scores over 90.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What proportion of tests has scores over 90?
This proportion is 1 subtracted by the pvalue of Z when X = 90. So



has a pvalue of 0.9772.
So 1-0.9772 = 0.0228 = 2.28% of tests has scores over 90.
Answer:
x = 2.5
Step-by-step explanation:
4x-1/2 = x+7
4x-x = 7+0.5
3x = 7.5
x = 2.5
Without taking out the cost that would be given to the author and publisher it would be $25,893, you just multiply 9.45 by 2,740
Answer:
i think two months im not sure tho
Step-by-step explanation:
<span>The missing angle measure in triangle ABC is 55°.
The measure of angle BAC in triangle ABC is equal to the measure of angle
EDF in triangle DEF.
The measure of angle ABC in triangle ABC is equal to the measure of </span><span>angle EFD in triangle DEF.
Triangles ABC and DEF are similar by the angle-angle criterion.
True </span>