1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
4 years ago
12

Fit a quadratic function to these three points: (-2,8)(0,-4),and (4,68)

Mathematics
1 answer:
aev [14]4 years ago
6 0
Given three points
P1(-2,8)
P2(0,-4)
P3(4,68)
We need the quadratic equation that passes through all three points.

Solution:
We first assume the final equation to be
f(x)=ax^2+bx+c .............................(0)

Observations:
1. Points are not symmetric, so cannot find vertex visually.
2. Using the point (0,-4) we substitute x=0 into f(x) to get
f(0)=0+0+c=-4, hence c=-4.
3. We will use the two other points (P1 & P3) to set up a system of two equations to find a and b.
f(-2)=a(-2)^2+b(-2)-4=8 => 4a-2b-4=8.................(1)
f(4)=a(4^2)+b(4)-4=68 =>  16a+4b-4=68.............(2)
4. Solve system
2(1)+(2) => 24a+0b-12=84 => 24a=96 => a=96/24 => a=4 ......(3)
substitute (3) in (2) => 16(4)+4b-4=68 => b=8/4 => b=2  ..........(4)
5. Put values c=-4, a=4, b=2 into equation (0) to get

f(x)=4x^2+2x-4

Check:
f(-2)=4((-2)^2)+2(-2)-4=16-4-4=8
f(0)=0+0-4 = -4
f(4)=4(4^2)+2(4)-4=64+8-4=68
So all consistent, => solution ok.

You might be interested in
claudia earns overtime pay when she works more then 40 hours in a week how many hours of overtime pay did she work for the week
Bingel [31]
Ummmmmm is that all the information that you have about it
3 0
3 years ago
What is the diameter of the cylinder
vfiekz [6]
  • Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>

<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>

  • Volume of cylinder = 245π cubic units
  • Height of cylinder = 5 units

<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>

  • Diameter of cylinder?

<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>

<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>

  • Volume of cylinder = πr²h

<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>

➸ 245π = π × r² × 5

<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>

➸ 245 = r² × 5

➸ 245/5 = r²

➸ 49 = r²

➸ √(49) = r²

➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²

➸ 7 = r

➸ r = 7 units

  • <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>

<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>

  • Diameter = Radius × 2

<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>

➸ Diameter = 7 × 2

➸ Diameter = 14 units

  • <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>

5 0
2 years ago
Read 2 more answers
If your percent of discount is 25% and your sales price is $40, what is your original price. Please show me how you got your ans
Bumek [7]
$40 is 75%
so................
3 0
4 years ago
A student can answer 2 math problems in 3 minutes.How many math problems can he answer in 1 1/2​
Klio2033 [76]

the answer is 60 math problems

7 0
2 years ago
Read 2 more answers
In general, the eigenvalues of an upper triangular matrix are given by the entries on the diagonal. The same is true for a lower
SCORPION-xisa [38]

Answer:

Verified!

Step-by-step explanation:

Upper or lower triangular matrix does not make any difference in finding eigenvalues because equalizing determinant to zero will lead to the same result.

Let's apply it for 2x2 matix:

A = \left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0\\0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0\\-b&\lambda-c\end{array}\right]=(\lambda-a)(\lambda-c)=0

So, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have (\lambda-a)(\lambda-c).

So, eigenvalues are \lambda_1=a,\:\lambda_2=c

Let's apply it for 3x3 matrix:

A = \left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0&0\\-b&\lambda-c&0\\-d&-e&\lambda-f\end{array}\right]=(\lambda-a)(\lambda-c)(\lambda-f)=0

So as above, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have (\lambda-a)(\lambda-c)(\lambda-f).

So eigenvalues are \lambda_1=a,\:\lambda_2=c,\:\lambda_3=f

4 0
4 years ago
Other questions:
  • Look at the table how are, 50, 75, and 100 related to 25?​
    6·2 answers
  • Help please asymptotes if you know about these plz lmk if u have a discord
    9·1 answer
  • Evaluate the expression <br>(4+49) - 4X10
    10·1 answer
  • What is the product (3a2b4)(-8ab3)
    9·1 answer
  • Please help!
    11·2 answers
  • Explain how you know that the height of the triangle is 3 units long,
    7·1 answer
  • Which pattern is graph ​
    5·1 answer
  • On a spelling quiz, Lily got 16 out of 20 questions correct. Select all the expressions that show the ratio of Lily’s correct an
    8·2 answers
  • Solve the proportion for x
    15·1 answer
  • (math problem in picture)
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!