Ummmmmm is that all the information that you have about it
- Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>
<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>
- Volume of cylinder = 245π cubic units
- Height of cylinder = 5 units
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>
<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
- Volume of cylinder = πr²h
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ 245π = π × r² × 5
<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>
➸ 245 = r² × 5
➸ 245/5 = r²
➸ 49 = r²
➸ √(49) = r²
➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²
➸ 7 = r
➸ r = 7 units
- <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>
<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ Diameter = 7 × 2
➸ Diameter = 14 units
- <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>
Answer:
Verified!
Step-by-step explanation:
Upper or lower triangular matrix does not make any difference in finding eigenvalues because equalizing determinant to zero will lead to the same result.
Let's apply it for 2x2 matix:
![A = \left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0\\0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0\\-b&\lambda-c\end{array}\right]=(\lambda-a)(\lambda-c)=0](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%260%5C%5Cb%26c%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Clambda%20I%20-%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Clambda%260%5C%5C0%26%5Clambda%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%260%5C%5Cb%26c%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cdet%28%5Clambda%20I%20-%20A%29%20%3D%20det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Clambda-a%260%5C%5C-b%26%5Clambda-c%5Cend%7Barray%7D%5Cright%5D%3D%28%5Clambda-a%29%28%5Clambda-c%29%3D0)
So, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have
.
So, eigenvalues are 
Let's apply it for 3x3 matrix:
![A = \left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0&0\\-b&\lambda-c&0\\-d&-e&\lambda-f\end{array}\right]=(\lambda-a)(\lambda-c)(\lambda-f)=0](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%260%260%5C%5Cb%26c%260%5C%5Cd%26e%26f%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Clambda%20I%20-%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Clambda%260%260%5C%5C0%26%5Clambda%260%5C%5C0%260%26%5Clambda%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%260%260%5C%5Cb%26c%260%5C%5Cd%26e%26f%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cdet%28%5Clambda%20I%20-%20A%29%20%3D%20det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Clambda-a%260%260%5C%5C-b%26%5Clambda-c%260%5C%5C-d%26-e%26%5Clambda-f%5Cend%7Barray%7D%5Cright%5D%3D%28%5Clambda-a%29%28%5Clambda-c%29%28%5Clambda-f%29%3D0)
So as above, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have
.
So eigenvalues are 