Answer:
Fraction : 3/9
Decimal : 0.33333333 (the .3 continues)
Percent : 33.33333%
Step-by-step explanation:
Dividing 3 by 9 will give you a continous set of 3.
Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer: x = 40.81 or 41
Step-by-step explanation:
A = B = 21
C = 35
Hypotenuse = x
Calculating Hypotenuse:
21^2 + 35^2 = x^2
=> 441 + 1225 = x^2
=> x^2 = 1666
=> x = 40.81 or 41
For example, a mix number like 1 ½ basically equals to a whole and a half and in this case the whole would be 2 and the half of 2 is 1. hence, the improper fraction of 1 ½ is 3/2.
Answer:tu
Step-by-step explanation:jthty6866