Answer:
30% probability that it is either red or yellow
Step-by-step explanation:
We have that:
10% of the candies are green
10% of the candies are red
20% of the candies are yellow
20% of the candies are blue
20% of the candies are orange.
The rest is brown. The percentage of brown candies is not important to this problem.
If you pick a candy at random, what is the probability that it is either red or yellow?
10% are red
20% are yellow
10 + 20 = 30%
30% probability that it is either red or yellow
Answer:
x=6 because if you multiple 4x6 you get 24
not exactly sure but try
3.
area=legngth tiimes width
legnth is 10 more than 2 times width
l=10+2w
lw=area=(10+2w)w=10w+2w^2
area=3600
3600=10w+2w^2
so divide by 2
1800=5w+w^2
subtract 1800 from both sides
(note they used x instead of w)
0=w^2+5w-1800
then the facotred form is (w-40)(w+45)=0
0 product property measn if you have xy, then x and or y =0
therefor
w-40=0 and w+45=0
w=40 or -45
discard negative because negative legnth is not possible
explian how solution relates to situation
it is math so it is correct because we represented it corrrectly
the other solution is because of math and eliminate negative legnth becasue tha tis not possible
basically because we represented it correctly
not a very clear quetion to answer
basically 'because it represents the solution so we solved it and it is correct'
so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
-3 / 4 + p = 1/2
LCD 4 and 2 = 4
Multiply by LCD = 4
p. (4)- 3/4 .( 4 ) = 1/2.(4)
4 p - 3 = 2
Add 3 to both sides:
4 p - 3 + 3 = 2 + 3
4 p = 5
Divide both sides by 4 :
4p / 4 = 5 /4
p = 5/4