Answer:
1.
centre(h,k)=(-13,9)
radius (r)=6
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x+13)²+(y-9)²=6²
x²+26x+169+y²-18y+81=36
x²+y²+26x-18y+169+81-36=0
x²+y²+26x-18y +214=0
is a required equation of the circle.
2.
centre(h,k)=(1,-1)
radius (r)=11
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x-1)²+(y+1)²=11²
x²-2x+1+y²+2y+1=121
x²+y²-2x+2y=121-2
x²+y²-2x+2y=119
is a required equation of the circle.
Answer:
Bernardo
Step-by-step explanation:
Answer:
x = 12
Step-by-step explanation:
Step 1: Define
f(x) = 4x + 6
f(x) = 54
Step 2: Substitute variables
54 = 4x + 6
Step 3: Solve for <em>x</em>
<u>Subtract 6 on both sides:</u> 48 = 4x
<u>Divide both sides by 4:</u> 12 = x
Step 4: Check
<em>Plug in x to verify it is a solution.</em>
f(12) = 4(12) + 6
f(12) = 48 + 6
f(12) = 54
This is a classic example of a 45-45-90 triangle: it's a right triangle (one angle of 90) & two other sides of the same length, which means two angles of the same length (and 45 is the only number that will work). With a 45-45-90 triangle, the lengths of the legs are easy to determine:
45-45-90
1-1-sqrt2
Where the hypotenuse corresponds to sqrt2.
Now, your hypotenuse is 10.
To figure out what each leg is, divide 10/sqrt2 (because sqrt2/sqrt2 = 1, which is a leg length in the explanation above).
Problem: you can't divide by radicals. So, we'll have to rationalize the denominator:
(10•sqrt2)/(sqrt2•sqrt2)
This can be rewritten:
10sqrt2/sqrt(2•2)
=10sqrt2/sqrt4
=10sqrt2/2
=5sqrt2
Hope this helps!!
I hope the solution in pic helps you