Mode are repeating numbers in a sequence therefore 23 is your mode
(A) For x representing the cost of one of Tanya's items, her total purchase cost 5x. The cost of one of Tony's items is then (x-1.75) and the total of Tony's purchase is 6(x-1.75). The problem statement tells us these are equal values. Your equation is ...
... 5x = 6(x -1.75)
(B) Subtract 5x, simplify and add the opposite of the constant.
... 5x -5x = 6x -6·1.75 -5x
... 0 = x -10.50
... 10.50 = x
(C) 5x = 5·10.50 = 52.50
... 6(x -1.75) = 6·8.75 = 52.50 . . . . . the two purchases are the same value
(D) The individual cost of Tanya's iterms was $10.50. The individual cost of Tony's items was $8.75.
Let
= amount of salt (in pounds) in the tank at time
(in minutes). Then
.
Salt flows in at a rate

and flows out at a rate

where 4 quarts = 1 gallon so 13 quarts = 3.25 gallon.
Then the net rate of salt flow is given by the differential equation

which I'll solve with the integrating factor method.



Integrate both sides. By the fundamental theorem of calculus,





After 1 hour = 60 minutes, the tank will contain

pounds of salt.
5 minutes later the hand moves five minutes later